As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
SUMMARYRoot system architecture responds plastically to some abiotic stresses, including phosphorus (P), iron (Fe) and water deficiency, but its response mechanism is still unclear. We cloned and characterized a vegetative b-expansin gene, GmEXPB2, from a Pi starvation-induced soybean cDNA library. Transient expression of 35S::GmEXPB2-GFP in onion epidermal cells verified that GmEXPB2 is a secretory protein located on the cell wall. GmEXPB2 was found to be primarily expressed in roots, and was highly induced by Pi starvation, and the induction pattern was confirmed by GUS staining in transgenic soybean hairy roots. Results from intact soybean composite plants either over-expressing GmEXPB2 or containing knockdown constructs, showed that GmEXPB2 is involved in hairy root elongation, and subsequently affects plant growth and P uptake, especially at low P levels. The results from a heterogeneous transformation system indicated that overexpressing GmEXPB2 in Arabidopsis increased root cell division and elongation, and enhanced plant growth and P uptake at both low and high P levels. Furthermore, we found that, in addition to Pi starvation, GmEXPB2 was also induced by Fe and mild water deficiencies. Taken together, our results suggest that GmEXPB2 is a critical root b-expansin gene that is intrinsically involved in root system architecture responses to some abiotic stresses, including P, Fe and water deficiency. In the case of Pi starvation responses, GmEXPB2 may enhance both P efficiency and P responsiveness by regulating adaptive changes of the root system architecture. This finding has great agricultural potential for improving crop P uptake on both low-P and P-fertilized soils.
(J.S., L.V.K.) Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils that severely limit crop growth and production, including soybean (Glycine max). Understanding the physiological mechanisms relating to plant Al and P interactions should help facilitate the development of more Al-tolerant and/or P-efficient crops. In this study, both homogeneous and heterogeneous nutrient solution experiments were conducted to study the effects of Al and P interactions on soybean root growth and root organic acid exudation. In the homogenous solution experiments with a uniform Al and P distribution in the bulk solution, P addition significantly increased Al tolerance in four soybean genotypes differing in P efficiency. The two P-efficient genotypes appeared to be more Al tolerant than the two P-inefficient genotypes under these high-P conditions. Analysis of root exudates indicated Al toxicity induced citrate exudation, P deficiency triggered oxalate exudation, and malate release was induced by both treatments. To more closely mimic low-P acid soils where P deficiency and Al toxicity are often much greater in the lower soil horizons, a divided root chamber/nutrient solution approach was employed to impose elevated P conditions in the simulated upper soil horizon, and Al toxicity/P deficiency in the lower horizon. Under these conditions, we found that the two P-efficient genotypes were more Al tolerant during the early stages of the experiment than the P-inefficient lines. Although the same three organic acids were exuded by roots in the divided chamber experiments, their exudation patterns were different from those in the homogeneous solution system. The two P-efficient genotypes secreted more malate from the taproot tip, suggesting that improved P nutrition may enhance exudation of organic acids in the root regions dealing with the greatest Al toxicity, thus enhancing Al tolerance. These findings demonstrate that P efficiency may play a role in Al tolerance in soybean. Phosphorus-efficient genotypes may be able to enhance Al tolerance not only through direct Al-P interactions but also through indirect interactions associated with stimulated exudation of different Al-chelating organic acids in specific roots and root regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.