Background Although use of a dynamic hip screw (DHS) for stable intertrochanteric hip fracture fixation has been successfully applied in fracture healing for more than 20 years, DHS fixation on unstable intertrochanteric fractures still has a high failure rate, especially in patients with osteoporosis. Although the wire fixation is usually incorporated with orthopedic device to treat fracture, the wiring techniques are developed through experiences. Thus, this study is objective to investigate the biomechanical property of different wire fixation methods incorporated with DHS system to provide the lesser trochanter fragment stable fixation on osteoporotic TypeA2.1 fracture for enhancing stability after bone reduction. Results Sawbone testing results demonstrated higher maximum load, stiffness, and energy in a DHS with wire fixation compared with DHS fixation only. In static biomechanical testing of a cadaver femur, we compared the stiffness of five fixation models and then tested a fatigue failure model in cycle loading with DHS fixation only. Wiring fixation can enhance stability and the cut-out failure model in the fatigue test was identical to the clinical failure model. Conclusions Lesser trochanteric fragment fixation is a crucial concern in the stability of an A2.1 unstable fracture, and the combination of a wiring technique with a DHS seems beneficial for achieving better stability. The addition of an antirotational greater trochanter is likely to enhance stability through wiring of the greater trochanter.
Objective: This study aimed to evaluate the effects of nasal high-frequency oscillatory ventilation (NHFOV) vs. nasal continuous positive airway pressure (NCPAP) on postextubation respiratory failure (PRF) in infants after congenital heart surgery (CHS).Method: Eighty infants underwent postoperative invasive mechanical ventilation for more than 12 h and planned extubation. The infants were randomized to undergo either NHFOV or NCPAP after extubation. Primary outcomes were the incidence of PRF and reintubation, the average PaCO2 level, the average oxygenation index (OI), and pulmonary recruitment in the early extubation phase. Secondary outcomes included the NCPAP/NHFOV time, length of hospital stay, treatment intolerance, signs of discomfort, pneumothorax, adverse hemodynamic effects, nasal trauma, and mortality.Results: Except for PaCO2 within 12 after extubation (39.3 ± 5.8 vs. 43.6 ± 7.3 mmHg, p = 0.05), there was no statistically significant difference for any of the primary outcome measure (PRF, reintubation within 12 h after extubation, oxygenation index within 12 h after extubation, or lung volumes on X-ray after extubation) or secondary outcome measures (duration of non-invasive ventilation, duration of hospital stay, ventilation intolerance, signs of discomfort, pneumothorax, nasal trauma, adverse hemodynamic effects, or death prior to discharge), p > 0.1 for each comparison.Conclusion: NHFOV therapy after extubation in infants after CHS was more efficient in improving CO2 cleaning than NCPAP therapy, but there was no difference in other outcomes (PRF, reintubation, oxygenation index, and pulmonary recruitment).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.