Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Covalent organic frameworks have shown considerable application potential and exceptional properties in the construction of stimulus-responsive materials. Here, we designed a sweat-responsive covalent organic framework film for material-based fingerprint liveness detection. When exposed to human sweat, the COFTPDA-TFPy film can transform from yellow to red. The COFTPDA-TFPy film, when touched by living fingers, can produce the naked-eye-identified fingerprint pattern through the sweat-induced color change, while artificial fake fingerprints cannot. This technique, which we named material-based liveness detection, can thus intuitively discern living fingers from fake fingerprints with a 100% accuracy rate. Additionally, the distribution of sweat pores on human skin can also be collected and analyzed by shortening the contact time. By merely washing them with ethanol, all the samples can be utilized again. This work inventively accomplished material-based liveness detection and naked-eye-identified sweat pore analysis and highlighted their potential for use in clinical research and personal identification.
Gallium-based liquid metals (LMs) featuring both high conductivity and fluidity are ideal conductors for soft and stretchable electronics. However, their liquid nature is a doubleedged sword in many key applications since LMs are inherently prone to mechanical damage. Although additional encapsulation is frequently used for the protection of delicate LM electrodes, it hinders the electrical interfacing with other objects for interconnection, sensing, and stimulation. Here, different from conventional patterning methods that deposit LM on or inside substrates, we for the first time report a simple strategy to create surface-embedded LM of eutectic gallium-indium (EGaIn) circuits with mechanical damage endurance. This was achieved by using direct magnetic printing to overcome the high surface tension of LM, allowing it to be passively filled into the laser-patterned microgrooves on soft substrates. We show that the surface-embedded LM circuits are resistant to mechanical erasure, washing, and peeling. We also show the applications of our surface-embedded LM electrodes in respiration monitoring and electrical stimulation of nerves. This work provides a simple and efficient way to create mechanically reliable LM microelectrodes, holding great promise for wearable and implantable bioelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.