MoS(2) nanosheet-coated TiO(2) nanobelt heterostructures--referred to as TiO(2)@MoS(2)--with a 3D hierarchical configuration are prepared via a hydrothermal reaction. The TiO(2) nanobelts used as a synthetic template inhibit the growth of MoS(2) crystals along the c-axis, resulting in a few-layer MoS(2) nanosheet coating on the TiO(2) nanobelts. The as-prepared TiO(2)@MoS(2) heterostructure shows a high photocatalytic hydrogen production even without the Pt co-catalyst. Importantly, the TiO(2)@MoS(2) heterostructure with 50 wt% of MoS(2) exhibits the highest hydrogen production rate of 1.6 mmol h(-1) g(-1). Moreover, such a heterostructure possesses a strong adsorption ability towards organic dyes and shows high performance in photocatalytic degradation of the dye molecules.
A Ni 3 S 2 nanorods/Ni foam composite electrode is prepared as a highperformance catalyst for the oxygen evolution reaction (OER), which exhibits excellent OER activity with a small overpotential of $157 mV based on the onset of catalytic current.
A self-powered pressure-sensor matrix based on ZnS:Mn particles for more-secure signature collection is presented, by recording both handwritten signatures and the pressure applied by the signees. This large-area, flexible sensor matrix can map 2D pressure distributions in situ, either statically or dynamically, and the piezophotonic effect is proposed to initiate the mechanoluminescence process once a dynamic mechanical strain is applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.