A self-powered pressure-sensor matrix based on ZnS:Mn particles for more-secure signature collection is presented, by recording both handwritten signatures and the pressure applied by the signees. This large-area, flexible sensor matrix can map 2D pressure distributions in situ, either statically or dynamically, and the piezophotonic effect is proposed to initiate the mechanoluminescence process once a dynamic mechanical strain is applied.
By shaping T cell immunity, tolerogenic dendritic cells (tDCs) play critical roles in the induction of immune tolerance after transplantation. However, the role of long noncoding RNAs (lncRNAs) in the function and immune tolerance of dendritic cells (DCs) is largely unknown. Here, we found that the lncRNA MALAT1 is upregulated in the infiltrating cells of tolerized mice with cardiac allografts and activated DCs. Functionally, MALAT1 overexpression favored a switch in DCs toward a tolerant phenotype. Mechanistically, ectopic MALAT1 promoted dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) expression by functioning as an miR155 sponge, which is essential for the tolerogenic maintenance of DCs and the DC-SIGN-positive subset with more potent tolerogenic ability. The adoptive transfer of MALAT1-overexpressing DCs promoted cardiac allograft survival and protected from the development of experimental autoimmune myocarditis, accompanied with increasing antigen-specific regulatory T cells. Therefore, overexpressed MALAT1 induces tDCs and immune tolerance in heart transplantation and autoimmune disease by the miRNA-155/DC-SIGH/IL10 axis. This study highlights that the lncRNA MALAT1 is a novel tolerance regulator in immunity that has important implications in settings in which tDCs are preferred.
Herein, polydimethylsiloxane (PDMS) composite films containing BaTiO3 particles with an average size of 70 and 500 nm are prepared and characterized, respectively. Then, triboelectric nanogenerators (TENG) based on the composite films are designed at different BaTiO3 sizes and mass ratios. In addition, multiwall carbon nanotubes (MWCNTs) are also used for uniform dispersion of BaTiO3 particles in composite films for the TENG device. With the synergistic effects of BaTiO3/MWCNT fillers, discrete conductive micronetworks surrounded by BaTiO3 particles form, and then, the effective filler–matrix interface effect in the three‐phase composite is enhanced, leading to superior triboelectric output performance, supported by much higher dielectric permittivity and COMSOL simulation. Moreover, the triboelectric output performance of TENG changes with different‐sized BaTiO3 particles. As to BT‐70‐MWCNT/PDMS composites, with the same mass ratio of BT, the peak output current is always higher than that of BT‐500‐MWCNT/PDMS. Furthermore, the optimum BT mass ratio of BT‐70‐MWCNT/PDMS composites is also higher than that of BT‐500. With BaTiO3 of size 70 nm, the maximum surface charge density is about 160 μC m−2 under an optimized mass ratio, whereas it is about 110 μC m−2 for BaTiO3 of size 500 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.