Mechanisms governing allogeneic T-cell responses after allogeneic hematopoietic stem cell (HSC) and solid organ transplantation are incompletely understood. Long non-coding RNAs (lncRNA) do not code for, but control gene expression with tissue specificity. However, their role in T-cell alloimmunity is unknown. We performed RNA-seq on donor T-cells from HSCT patients and found that increasing strength of allogeneic stimulation caused greater differential expression of lncRNAs. The differential expression was validated in an independent patient cohort, and also following ex vivo allogeneic stimulation of healthy human T-cells. Linc00402, a novel, conserved lncRNA, was identified as the most differentially expressed and was enriched 88 fold in human T-cells. Mechanistically, it was mainly located in the cytoplasm, and its expression was rapidly reduced following T-cell activation. Consistent with this, tacrolimus preserved the expression of Linc00402 following T-cell activation, and lower levels of Linc00402 were found in patients who subsequently went on to develop acute graft versus host disease (GVHD). The dysregulated expression of Linc00402 was also validated in murine T-cells, both in vitro and in vivo. Functional studies using multiple modalities to deplete Linc00402 in both mouse and human T-cells, demonstrated a critical role for Linc00402 in the T-cell proliferative response to an allogeneic stimulus but not a non-specific anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a novel, conserved regulator of allogeneic T-cell function. Because of its T-cell specific expression and its impact on allogeneic T-cell responses, targeting Linc00402 may improve outcomes after allogeneic HSC and solid organ transplantation.One sentence summaryLncRNAs are differentially expressed by allogeneic antigen-stimulated T-cells, and the novel lncRNA, Linc00402, is a specific regulator of mouse and human allogeneic T-cells.