Fenestrations are pores within liver sinusoidal endothelial cells (LSECs) that enable the transfer of substrates (particularly insulin and lipoproteins) between blood and hepatocytes. With increasing age, there are marked reductions in fenestrations, referred to as pseudocapillarization. Currently, fenestrations are thought to be regulated by vascular endothelial growth factor and nitric oxide (NO) pathways promoting remodeling of the actin cytoskeleton and cell membrane lipid rafts. We investigated the effects of drugs that act on these pathways on fenestrations in old (18–24 mo) and young mice (3–4 mo). Isolated LSECs were incubated with either cytochalasin 7-ketocholesterol, sildenafil, amlodipine, simvastatin, 2, 5-dimethoxy-4-iodoamphetamine (DOI), bosentan, TNF-related apoptosis-inducing ligand (TRAIL) or nicotinamide mononucleotide (NMN). LSECs were visualized under scanning electron microscopy to quantify fenestration porosity, diameter, and frequency, as well as direct stochastic optical reconstruction microscopy to examine actin and NO synthase. In young and old LSECs, fenestration porosity, diameter and frequency were increased by 7-ketocholesterol, while porosity and/or frequency were increased with NMN, sildenafil, amlodipine, TRAIL, and cytochalasin D. In old mice only, bosentan and DOI increased fenestration porosity and/or frequency. Modification of the actin cytoskeleton was observed with all agents that increased fenestrations, while NO synthase was only increased by sildenafil, amlodipine, and TRAIL. In conclusion, agents that target NO, actin, or lipid rafts promote changes in fenestrations in mice LSECs. Regulation of fenestrations occurs via both NO-dependent and independent pathways. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance.NEW & NOTEWORTHY We demonstrate the effects of multiple nitric oxide-dependent and -independent pharmaceutical agents on fenestrations of the liver sinusoidal endothelium. Fenestrations are reorganized in response to nicotinamide mononucleotide, sildenafil, amlodipine, and TNF-related apoptosis-inducing ligand. This work indicates that age-related defenestration can be reversed pharmacologically, which has potential translational relevance for dyslipidemia and insulin resistance in old age.
Age-related changes in the liver sinusoidal endothelium, particularly the reduction in fenestrations, contribute to insulin resistance in old age. Metformin impacts on the aging process and improves insulin resistance. Therefore, the effects of metformin on the liver sinusoidal endothelium were studied. Metformin increased fenestrations in liver sinusoidal endothelial cells isolated from both young and old mice. Mice administered metformin in the diet for 12 months had increased fenestrations and this was associated with lower insulin levels. The effect of metformin on fenestrations was blocked by inhibitors of AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase, and myosin light chain kinase phosphorylation. Metformin led to increased transgelin expression and structural changes in the actin cytoskeleton but had no effect on lactate production. Metformin also generated fenestration-like structures in SK-Hep1 cells, a liver endothelial cell line, and this was associated with increased ATP, cGMP, and mitochondrial activity. In conclusion, metformin ameliorates age-related changes in the liver sinusoidal endothelial cell via AMPK and endothelial nitric oxide pathways, which might promote insulin sensitivity in the liver, particularly in old age.
Background: Diabetes has been found to increase severity and mortality under the current pandemic of coronavirus disease of 2019 (COVID-19). Up to date, the clinical characteristics of diabetes patients with COVID-19 and the risk factors for poor clinical outcomes are not clearly understood. Methods: The study was retrospectively carried out on enrolled diabetes patients with laboratory confirmed COVID-19 infection from a designated medical center for COVID-19 from January 25th, 2020 to February 14th, 2020 in Wuhan, China. The medical record was collected and reviewed. Univariate and multivariate analyses were performed to assess the risk factors associated with the severe events which were defined as a composite endpoint of admission to intensive care unit, the use of mechanical ventilation, or death. Results: A total of 52 diabetes patients with COVID-19 were finally included in the study. 21 (40.4%) patients had developed severe events in 27.50 (IQR 12.25–35.75) days follow-up, 15 (28.8%) patients experienced life-threatening complications and 8 patients died with a recorded mortality rate of 15.4%. Only 13 patients (41.9%) were in optimal glycemic control with HbA1c value of <7.0%. In addition to general clinical characteristics of COVID-19, the severe events diabetes patients showed higher counts of white blood cells and neutrophil, lower lymphocytes (40, 76.9%), high levels of hs-CRP, erythrocyte sedimentation rate (ESR) and procalcitonin (PCT) as compared to the non-severe diabetes patients. Mild higher level of cardiac troponin I (cTNI) (32.0 pg/ml; IQR 16.80–55.00) and D-dimer (1.70 μg/L, IQR 0.70–2.40) were found in diabetes patients with severe events as compared to the non-severe patients (cTNI:20.00 pg/ml, IQR5.38–30.00, p = 0.019; D-dimer: 0.70 μg/L, IQR 0.30–2.40, p = 0.037). After adjusting age and sex, increased level of cTNI was found to significantly associate with the incidence of severe events (HR: 1.007; 95% CI: 1.000–1.013; p = 0.048), Furthermore, using of α-glucosidase inhibitors was found to be the potential protectant for severe events (HR: 0.227; 95% CI: 0.057–0.904; p = 0.035). Conclusion: Diabetes patients with COVID-19 showed poor clinical outcomes. Vigorous monitoring of cTNI should be recommended for the diabetes patients with COVID-19. Usage of α-glucosidase inhibitors could be a potential protectant for the diabetes patients with COVID-19.
Metformin, the first-line therapy for type 2 diabetes (T2D), decreases hepatic glucose production and reduces fasting plasma glucose levels. Dorzagliatin, a dual-acting orally bioavailable glucokinase activator targeting both the pancreas and liver glucokinase, decreases postprandial glucose in patients with T2D. In this randomized, double-blind, placebo-controlled phase 3 trial, the efficacy and safety of dorzagliatin as an add-on therapy to metformin were assessed in patients with T2D who had inadequate glycemic control using metformin alone. Eligible patients with T2D (n = 767) were randomly assigned to receive dorzagliatin or placebo (1:1 ratio) as an add-on to metformin (1,500 mg per day) for 24 weeks of double-blind treatment, followed by 28 weeks of open-label treatment with dorzagliatin for all patients. The primary efficacy endpoint was the change in glycated hemoglobin (HbA1c) levels from baseline to week 24, and safety was assessed throughout the trial. At week 24, the least-squares mean change from baseline in HbA1c (95% confidence interval (CI)) was −1.02% (−1.11, −0.93) in the dorzagliatin group and −0.36% (−0.45, −0.26) in the placebo group (estimated treatment difference, −0.66%; 95% CI: −0.79, −0.53; P < 0.0001). The incidence of adverse events was similar between groups. There were no severe hypoglycemia events or drug-related serious adverse events in the dorzagliatin and metformin combined therapy group. In patients with T2D who experienced inadequate glycemic control with metformin alone, dorzagliatin resulted in effective glycemic control with good tolerability and safety profile (NCT03141073).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.