Synthetic aperture radar (SAR) ship detection based on deep learning has been widely applied in recent years. However, two main obstacles are hindering SAR ship detection. First, the identification of ships in a port is seriously disrupted by the presence of onshore buildings. It is difficult for the existing detection algorithms to effectively distinguish the targets from such a complex background. Additionally, it appears more complicated to accurately locate densely arranged ships. Second, the ships in SAR images exist at a variety of scales due to multiresolution imaging modes and the variety of ship shapes; these pose a much greater challenge to ship detection. To solve the above problems, this paper proposes an object detection network combined with an attention mechanism to accurately locate targets in complex scenarios. To address the diverse scales of ship targets, we construct a loss function that incorporates the generalized intersection over union (GIoU) loss to reduce the scale sensitivity of the network. For the final processing of the results, soft nonmaximum suppression (Soft-NMS) is also introduced into the model to reduce the number of missed detections for ship targets in the presence of severe overlap. The experimental results reveal that the proposed model exhibits excellent performance on the extended SAR ship detection dataset (SSDD) while achieving real-time detection. INDEX TERMS Ship detection, synthetic aperture radar (SAR), deep neural network, attention mechanism.
:With the development of science and technology as well as the advancement of production technology, contemporary equipment is increasingly developing towards large-scale, complex, automated and intelligent direction. In order to ensure the safety and reliability of equipment, the remaining useful life (RUL) prediction technology has received widespread attention and been widely used. Traditional statistical data-driven methods are obviously influenced by the choice of models. Machine learning has powerful data processing ability, and does not need exact physical models and prior knowledge of experts. Therefore, machine learning has a broad application prospect in the field of RUL prediction. In view of this, the RUL prediction methods based on machine learning are analyzed and expounded in detail. According to the depth of machine learning model structure, it is divided into shallow machine learning methods and deep learning methods. At the same time, the development branches and research status of each method are sorted out, and the corresponding advantages and disadvantages are summarized. Finally, the future research directions of RUL prediction methods based on machine learning are discussed.
Ship detection plays an important role in synthetic aperture radar (SAR) image interpretation. However, there are still some difficulties in SAR ship detection. First, ships often have a large aspect ratio and arbitrary directionality in SAR images. Traditional detection algorithms can cause the detection area to be redundant, which makes it difficult to accurately locate the target in complex scenes. Second, ships in ports are often densely arranged, and the effective identification of densely arranged ships is complicated. Finally, ships in SAR images exist at a variety of scales due to the multiresolution imaging modes used and ship shape variations, which pose a considerable challenge for ship detection. To solve the above problems, we propose a multiscale adaptive recalibration network (MSARN) to detect multiscale and arbitrarily oriented ships in complex scenarios. The recalibration of the extracted multiscale features through global information increases the sensitivity of the network to the target angle, thereby increasing the accuracy of positioning. In particular, we designed a pyramid anchor and a loss function to match the rotated target. In addition, we modified the rotation non-maximum suppression (RNMS) method to solve the problem of the large overlap ratio of the detection box. The proposed model combines the positioning advantage of rotation detection with the speed advantage of a single-stage framework. Experiments show that based on the SAR rotation ship detection (SRSD) data set, the proposed algorithm has a faster detection speed and higher accuracy than some state-of-the-art methods. INDEX TERMS Ship detection, synthetic aperture radar (SAR), adaptive recalibration, neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.