The study explored punicalagin (PGN) as a wheat flour enhancer. The impact of PGN on the physicochemical and structural properties of wheat flour have been investigated. It turned out that PGN increased the formation time, stability, tensile resistance, extension, and viscoelasticity of the dough at the concentrations of 0.13 and 0.26 mg/g. Scan electron microscope images of the cross section of the dough displayed a more compact and ordered network structure with the addition of 0.13 and 0.26 mg/g PGN. Fourier transform infrared spectroscopy spectra indicated an increase of α-helix and β-sheet content. However, nonlinear enhancing effects of PGN on the stretching properties, rheology, and structural properties of the dough were observed at concentrations of 0.39 and 0.52 mg/g. Correspondingly, cleavages were observed on the cross section of the dough and the content of β-sheet showed a trend of reduction in the dough with addition of PGN at high concentrations. Taken together, these results indicated the potential usage of PGN as a wheat flour enhancer of natural origin at the concentration below 0.39 mg/g in the flour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.