BackgroundExtracellular matrix protein 1 (ECM1) and vascular endothelial growth factor-C (VEGF-C) are secretory glycoproteins that are associated with lymphangiogenesis; these proteins could, therefore, play important roles in the lymphatic dissemination of tumors. However, very little is known about their potential roles in lymphangiogenesis. The aim of this study was to investigate whether correlations exist between ECM1 and VEGF-C in human breast cancer, lymphangiogenesis, and the clinicopathological characteristics of the disease.MethodsECM1 and VEGF-C mRNA and protein expression levels in 41 patients were investigated using real-time reverse transcriptase polymerase chain reaction (RT-PCR), or immunohistochemical (IHC) staining of breast cancer tissue, matched noncancerous breast epithelial tissues, and suspicious metastatic axillary lymph nodes. D2-40 labelled lymph vessels and lymphatic microvessel density (LMVD) were counted. Correlations between ECM1 or VEGF-C protein expression levels, LMVD, and clinicopathological parameters were statistically tested.ResultsThe rate of ECM1 positive staining in breast cancer tissues was higher (31/41, 75.6%) than that in the corresponding epithelial tissues (4/41, 9.8%, P < 0.001) and lymph nodes (13/41, 31.7%, P < 0.001). Similarly, the VEGF-C expression rate in cancer specimens was higher (33/41, 80.5%) than in epithelial tissues (19/41, 46.3%, P < 0.01) or lymph nodes (15/41, 36.6%, P < 0.01). Higher ECM1 and VEGF-C mRNA expression levels were also detected in the tumor tissues, compared to the non-cancerous tissue types or lymph nodes (P < 0.05). ECM1 protein expression was positively correlated with the estrogen receptor status (P < 0.05) and LMVD (P < 0.05). LMVD in the ECM1- and VEGF-C-positive tumor specimens was higher than that in the tissue types with negative staining (P < 0.05).ConclusionsBoth ECM1 and VEGF-C were overexpressed in breast cancer tissue samples. ECM1 expression was positively correlated with estrogen responsiveness and the metastatic properties of breast cancer. We conclude, therefore, that ECM1 and VEGF-C may have a synergistic effect on lymphangiogenesis to facilitate lymphatic metastasis of breast cancer.
BackgroundMatrix metalloproteinase 9 (MMP-9) is a type-IV collagenase that is highly expressed in breast cancer, but its exact role in tumor progression and metastasis is unclear.Methods MMP-9 mRNA and protein expression was examined by real-time reverse transcriptase PCR and immunohistochemical staining, respectively, in 41 breast cancer specimens with matched peritumoral benign breast epithelial tissue and suspicious metastatic axillary lymph nodes. Lymph vessels were labeled with D2-40 and lymphatic microvessel density (LMVD) was calculated. Correlation of MMP-9 protein expression with clinicopathological parameters and LMVD was also evaluated.ResultsMMP-9+ staining in breast cancer specimens (35/41, 85.4%) was higher than in matched epithelium (21/41, 51.2%; P<0.05) and lymph nodes (13/41, 31.7%; P<0.001). Higher MMP-9 mRNA expression was also detected in tumor specimens compared with matched epithelial tissues and lymph nodes (P<0.05). Elevated MMP-9 expression was correlated with lymph node metastasis and LMVD (P<0.05).ConclusionMMP-9 was overexpressed in breast cancer specimens compared with peritumoral benign breast epithelium and lymph nodes. Moreover, its expression in the matched epithelium and lymph nodes was positively associated with lymph node metastasis, and its expression in lymph nodes was positively associated with lymphangiogenesis in breast cancer. Thus, MMP-9 is a potential marker for breast cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.