Allium chinense, a traditional herbal medicine, has been used for the treatment of cardiovascular diseases for hundreds of years. In this study, A. chinense steroids (ACSs) including three steroidal glycosides and their parent aglycones were isolated from the bulbs of A. chinense. For the first time, their cardioprotective effects were evaluated in cultured rat cardiac H9C2 cells by pretreatment with ACSs for 24 h before exposure to 0.2 mm H(2)O(2). The results showed the cell viability decreased markedly when H9C2 cells were incubated with 0.2 mm H(2)O(2) alone for 2 h, while the cell lipid peroxidation (estimated by the excessive production of nitric oxide and malondialdehyde) and intracellular free calcium concentration ([Ca(2+)](i)) increased significantly. The addition of 20 microm (below the toxic concentration) of ACSs notably attenuated the cellular injury induced by H(2)O(2). The effects of ACSs in our experiments were similar to those of nimodipine, a clinically applied calcium channel blocker. Preliminary analysis of the structure-activity relationship indicated that ACSs with a spirostane-type skeleton exhibited stronger protection than that with a furostane-type skeleton, and glycosylation of the steroids could substantially lower the protective activities. The above results suggested the protective effects of steroids originated from A. chinense on the oxidative injury of H9C2 cells and ACSs may have potential for preventing cardiac injuries induced by oxidative stress.
Guided by bioisosterism and pharmacokinetic parameters, we designed and synthesized a series of novel benzamide derivatives. Preliminary in vitro studies indicated that compounds 10b and 10j show significant inhibitory bioactivity in HepG2 cells (IC values of 0.12 and 0.13 μM, respectively). Compounds 10b and 10j induced the expression of HIF-1α protein and downstream target gene p21, and upregulated the expression of cleaved caspase-3 to promote tumor cells apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.