PurposeResearch in the area of technology‐enhanced learning (TEL) throughout the last decade has largely focused on sharing and reusing educational resources and data. This effort has led to a fragmented landscape of competing metadata schemas, or interface mechanisms. More recently, semantic technologies were taken into account to improve interoperability. The linked data approach has emerged as the de facto standard for sharing data on the web. To this end, it is obvious that the application of linked data principles offers a large potential to solve interoperability issues in the field of TEL. This paper aims to address this issue.Design/methodology/approachIn this paper, approaches are surveyed that are aimed towards a vision of linked education, i.e. education which exploits educational web data. It particularly considers the exploitation of the wealth of already existing TEL data on the web by allowing its exposure as linked data and by taking into account automated enrichment and interlinking techniques to provide rich and well‐interlinked data for the educational domain.FindingsSo far web‐scale integration of educational resources is not facilitated, mainly due to the lack of take‐up of shared principles, datasets and schemas. However, linked data principles increasingly are recognized by the TEL community. The paper provides a structured assessment and classification of existing challenges and approaches, serving as potential guideline for researchers and practitioners in the field.Originality/valueBeing one of the first comprehensive surveys on the topic of linked data for education, the paper has the potential to become a widely recognized reference publication in the area.
Automated Web service selection is a key challenge in Service Oriented Architecture (SOA) research. With SOA becoming more popular in industry, and more Web services becoming available in the e-business market, the main issue changes from service discovery to service selection and ranking. In this paper, we propose a novel nonfunctional property-based service selection method by modifying the Logic Scoring Preference (LSP) method with Ordered Weighted Averaging (OWA) Operators. Moreover, the dynamic mechanism for evaluating metadata based QoS criteria of each service is presented for this method.
Abstract. Service-oriented Architecture supports software to be composed from services dynamically. Selecting and composing appropriate services according to business process, policies and non-functional constraints is an essential challenge. This paper proposes a method for automatic selection of the most relevant service for composition based on non-functional properties and the user's context. In doing this we also propose a method of obtaining and evaluating non-functional aspects.
Multimedia educational resources play an important role in education, particularly for distance learning environments. With the rapid growth of the multimedia web, large numbers of educational video resources are increasingly being created by several different organizations. It is crucial to explore, share, reuse, and link these educational resources for better e-learning experiences. Most of the video resources are currently annotated in an isolated way, which means that they lack semantic connections. Thus, providing the facilities for annotating these video resources is highly demanded. These facilities create the semantic connections among video resources and allow their metadata to be understood globally. Adopting Linked Data technology, this paper introduces a video annotation and browser platform with two online tools: Annomation and SugarTube. Annomation enables users to semantically annotate video resources using vocabularies defined in the Linked Data cloud. SugarTube allows users to browse semantically linked educational video resources with enhanced web information from different online resources. In the prototype development, the platform uses existing video resources for the history courses from the Open University (United Kingdom). The result of the initial development demonstrates the benefits of applying Linked Data technology in the aspects of reusability, scalability, and extensibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.