Arsenic is a kind of element widely distributed in the environment that may pose a threat to the ecological environment and human health, while effective remediation and sustainable utilization of arsenic-containing sludge is a challenge. Based on stabilization/solidification blast furnace slag-based cementitious materials (BCMs), this study innovatively proposes to improve the arsenic (As) solidification efficiency and long-term stability by using the activation mode of CaO and NaCl. The effects of different factors on the properties of the BCM were measured by unconfined compressive strength (UCS) tests, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The long-term stability and safety of the BCM were verified by leaching toxicity and improved three stage continuous extraction method (BCR) tests. Experimental results show that the addition of CaO provides conditions for the formation of ettringite (AFt), thus promoting the crystal growth of AFt. The addition of NaCl can promote the formation of Cl-AFt and play a good long-term stabilizing role. When the content of the alkali activator is 10% and the modulus is 1.0, the contents of CaO and NaCl are 10 and 1%, respectively. The BCM has the best efficiency in terms of UCS and As solidification. The UCS at 28 days was 5.4 MPa, and the leaching concentration of As was 0.309 mg/L, and the As solidification efficiency was up to 99.9%. In the improved BCR test, the proportions of residual and oxidizable states of arsenic increased by 19.6 and 13.5%, respectively, and the stability of heavy metals improved. These findings show that the BCM has good long-term stability and safety. Overall, this study shows that CaO and NaCl significantly increase the output of AFt and achieve the purpose of efficient and stable solidification of As by the BCM.
The rapid progress of modern industry not only brings convenience to people’s lives, but also brings negative effects. Industrial development produces a large amount of waste metal, which brings harm to the environment and human health. Carbon nitride (g-C3N4) was successfully prepared using the thermal-polymerization method and petal-like g-C3N4 (CA-g-C3N4) was impregnated with citric acid (CA). Compared with g-C3N4, CA-g-C3N4 showed extremely high photocatalytic activity because the petal-like g-C3N4 (CA-g-C3N4) had a larger specific surface area, which increased the active sites on the surface of the photocatalyst and improved the photocatalytic activity. After citric acid treatment, the removal of hexavalent chromium (Cr(VI)) by g-C3N4 increased from 48% to 93%. The photocatalytic materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) and UV-vis diffuse reflectance spectra (UV-vis). In summary, this study confirmed that citric acid can improve the photocatalytic activity of g-C3N4 by increasing its specific surface area and the active site of the photocatalytic material so as to achieve the purpose of removing hexavalent chromium from water.
Fe5Ce5Ti catalytic material is reported for the removal of Hg0 and AsH3 from yellow phosphorus flue gas by catalytic oxidation. The mechanism of the reaction is inferred from characterization analysis.
A large amount of metallurgical slag storage occupies land and wastes a lot of resources. Therefore, this study uses slag and red mud (RM) as the main raw materials, sodium silicate, and sodium hydroxide (NaOH) as the composite alkaline activators, the slag-based cementitious materials were prepared by the secondary mixed grinding method. The mechanical properties of the cementitious materials were characterized and analyzed. The results show that when the ratio of slag to RM in the cementing material is 8:2, the strength increases initially and then decreases with the increase of the content of the alkaline activator. Meanwhile, the content of the alkaline activator is 10% (mass fraction), and the 28-day compressive strength of the sample is up to 67.8MPa, which meets the requirements of slag cement with a 42.5 strength grade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.