There is no standardized approach to the greater occipital nerve (GON) block technique for treating occipital neuralgia. The aim of the present study was to validate the previously-suggested guidelines for conventional injection techniques and to provide navigational guidelines for safe GON block. The GON, lesser occipital nerve (LON) and occipital artery (OA) were carefully dissected in the occipital region of embalmed cadavers. Using a 3 D digitizer, the GON, LON, and OA were observed on the two reference lines. The distances between the landmarks were recorded and statistically analyzed. On the superior nuchal line, the mean distances between the external occipital protuberance (EOP) and the most medial branch of the GON was 33.5 mm. The mean distance between the EOP and the most medial branch of the OA was 37.4 mm. On the EOP-mastoid process (MP) line, the GON was on the medial third and the LON the lateral third of the EOP-MP line. The safe injection points on the EOP-MP line are about 3 cm from the EOP, 1 cm inferior parallel to the EOP-MP line, and about 3 cm away from the MP. Clin. Anat. 31:1058-1064, 2018. © 2018 Wiley Periodicals, Inc.
PurposeEstablishing the distribution patterns of occipital cutaneous nerves may help us understand their contribution to various occipital pain patterns and ensure that a proper local injection method for treatment is employed. The aim of this study was to demonstrate the detailed distribution patterns of the greater occipital nerve (GON), lesser occipital nerve (LON), and third occipital nerve (TON) using the modified Sihler’s staining technique.MethodsTen human cadavers were manually dissected to determine the nerve distributions. Specimens from eight human cadavers were treated using the modified Sihler’s staining.ResultsIn all cases, distinct GON branches proceeded laterally and were intensively distributed in the superolateral area from their emerging point. Very thin twigs were observed at the middle-trisected area, which had a fan-like shape, in the middle-upper occipital region.ConclusionThe LON and TON distribution areas were biased to the lateral side below the superior nuchal line, although these nerves exhibited multiple interconnections or overlapping areas with the GON. Furthermore, a nerve rarified zone in the shape of an inverted triangle was identified in the middle occipital area. Our findings improve our understanding of the occipital nerve anatomy and will aid in the management of occipital pain in clinical practice.
This study aimed to provide topographic information of the greater occipital (GON) and third occipital (3ON) nerves, with the three-dimensional locations of their emerging points on the back muscles (60 sides, 30 cadavers) and their spatial relationship with muscle layers, using a 3D digitizer (Microscribe G2X, Immersion Corp, San Jose CA, USA). With reference to the external occipital protuberance (EOP), GON pierced the trapezius at a point 22.6 ± 7.4 mm lateral and 16.3 ± 5.9 mm inferior and the semispinalis capitis (SSC) at a point 13.1 ± 6.0 mm lateral and 27.7 ± 9.9 mm inferior. With the same reference, 3ON pierced, the trapezius at a point 12.9 ± 9.3 mm lateral and 44.2 ± 21.4 mm inferior, the splenius capitis at a point 10.0 ± 5.3 mm lateral and 59.2 ± 19.8 mm inferior, and SSC at a point 11.5 ± 9.9 mm lateral and 61.4 ± 15.3 mm inferior. Additionally, GON arose, winding up the obliquus capitis inferior, with the winding point located 52.3 ± 11.7 mm inferior to EOP and 30.2 ± 8.9 mm lateral to the midsagittal line. Knowing the course of GON and 3ON, from their emergence between vertebrae to the subcutaneous layer, is necessary for reliable nerve detection and precise analgesic injections. Moreover, stereotactic measurement using the 3D digitizer seems useful and accurate for neurovascular structure study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.