Several important factors must be taken into consideration in order to maximize the efficiency of rapid prototyping (RP) processes. The ability to select the optimal orientation of the build direction is one of the most critical factors in using RP processes, since it affects part quality, build time, and part cost. This study aims to determine the optimal build-up direction when a part is built with the variable layer thickness for different RP systems. The average weighted surface roughness (AWSR) that is generated from the stair stepping effect, the build time, and the part cost using the variable layer thickness are all considered in the process. Using the multi-attribute decision-making method, the best orientation is determined among the orientation candidates chosen from the convex hull of a model. The validity of the algorithm is illustrated by an example. The algorithm can help RP users select the best build-up direction of the part and create an efficient process planning.
Isosurface generation from medical images was done using an oversampling method. The key idea of the proposed method was based on the fact that oversampling and downsampling together can improve the signal-to-noise (SNR) ratio. The procedure consisted of four phases: (1) oversampling of a voxel, (2) topology estimation, (3) low-pass filtering, and (4) downsampling. The effectiveness of the method was verified in terms of SNR, compactness, and surface roughness of the fabricated rapid prototyping parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.