There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.
The population of elderly people keeps increasing rapidly, which becomes a predominant aspect of our societies. As such, solutions both efficacious and cost-effective need to be sought. Ambient Assisted Living (AAL) is a new approach which promises to address the needs from elderly people. In this paper, we claim that human participation is a key ingredient towards effective AAL systems, which not only saves social resources, but also has positive relapses on the psychological health of the elderly people. Challenges in increasing the human participation in ambient assisted living are discussed in this paper and solutions to meet those challenges are also proposed. We use our proposed mutual assistance community, which is built with service oriented approach, as an example to demonstrate how to integrate human tasks in AAL systems. Our preliminary simulation results are presented, which support the effectiveness of human participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.