Increased inflammatory responses is one of the major characteristics of osteonecrosis of the femoral head (ONFH). We aimed to investigate the function of bone morphogenetic protein 2 (BMP-2)/interleukin (IL)-34 axis in the inflammatory responses of ONFH. The systemic and local expression of BMPs in ONFH patients were detected by qRT-PCR and ELISA. In vitro osteoclast differentiation and ONFH mouse models, induced by 20 mg/kg methylprednisolone through intramuscular injection, were established using wild type and BMP-2-/- mice to explore the regulatory role of BMP-2 in pro-inflammatory responses and bone defects of ONFH. IL-34 expression and function were examined in vitro and in vivo through qRT-PCR, TRAP staining, and gene knockout. The systemic and local expression of BMPs were elevated in ONFH patients. BMP-2 reduced the production of pro-inflammatory cytokines and inhibited the differentiation of osteoclasts. Mechanistically, BMP-2 inhibited osteoclasts formation through suppressing IL-34 expression, and then promoted bone repair and alleviated ONFH. In conclusion, our study reveals that BMP-2 inhibits inflammatory responses and osteoclast formation through down-regulating IL-34.
IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure.
In vitro
differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.