Background: Increased IL-6 level, M2 macrophages and PD-1 + CD8 + T cells in tumor microenvironments (TME) have been identified to correlate with resistance to checkpoint blockade immunotherapy, yet the mechanism remains poorly understood. Rab small GTPase-mediated trafficking of cytokines is critical in immuno-modulation. We have previously reported dysregulation of Rab37 in lung cancer cells, whereas the roles of Rab37 in tumor-infiltrating immune cells and cancer immunotherapy are unclear. Methods: The tumor growth of the syngeneic mouse allograft in wild type or Rab37 knockout mice was analyzed. Imaging analyses and vesicle isolation were conducted to determine Rab37-mediated IL-6 secretion. STAT3 binding sites at PD-1 promoter in T cells were identified by chromatin immunoprecipitation assay. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37, IL-6 and PD-1 and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from lung cancer patients. Results: We revealed that Rab37 regulates the secretion of IL-6 in a GTPase-dependent manner in macrophages to trigger M2 polarization. Macrophage-derived IL-6 promotes STAT3-dependent PD-1 mRNA expression in CD8 + T cells. Clinically, tumors with high stromal Rab37 and IL-6 expression coincide with tumor infiltrating M2-macrophages and PD1 + CD8 + T cells that predicts poor prognosis in lung cancer patients. In addition, lung cancer patients with an increase in plasma IL-6 level are found to be associated with immunotherapeutic resistance. Importantly, combined blockade of IL-6 and CTLA-4 improves survival of tumor-bearing mice by reducing infiltration of PD1 + CD8 + T cells and M2 macrophages in TME. Conclusions: Rab37/IL-6 trafficking pathway links with IL-6/STAT3/PD-1 transcription regulation to foster an immunosuppressive TME and combined IL-6/CTLA-4 blockade therapy exerts potent anti-tumor efficacy.
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Innate immune cells monitor invading pathogens and pose the first-line inflammatory response to coordinate with adaptive immunity for infection removal. Innate immunity also plays pivotal roles in injury-induced tissue remodeling and the maintenance of tissue homeostasis in physiological and pathological conditions. Lipid metabolites are emerging as the key players in the regulation of innate immune responses, and recent work has highlighted the importance of the lipid metabolite palmitate as an essential component in this regulation. Palmitate modulates innate immunity not only by regulating the activation of pattern recognition receptors in local innate immune cells, but also via coordinating immunological activity in inflammatory tissues. Moreover, protein palmitoylation controls various cellular physiological processes. Herein, we review the updated evidence that palmitate catabolism contributes to innate immune cell-mediated inflammatory processes that result in immunometabolic disorders.Fatty acid β-oxidation is a major process that provides energy by degrading fatty acids. The enzymes responsible for fatty acid β-oxidation are mainly located in the mitochondria and peroxisomes. Each β-oxidation cycle can generate one acetyl-CoA molecule, which serves as the source for tricarboxylic acid cycle progression and yields more ATP per carbon than that from sugars by oxidative phosphorylation [7]. In contrast to the removal of two carbons from long-chain fatty acids in each β-oxidation round, fatty acid synthesis is catalyzed by joining two carbon units to the growing acyl chain via the cytosolic fatty acid synthase complex [8]. Palmitate is a 16-carbon saturated fatty acid produced via the fatty acid synthesis pathway in a fatty acid synthase-dependent manner, and acts as the major lipid mediator in inflammatory response regulation. Palmitic Acid-Regulated Innate Immune ResponsesCell uptake of palmitate is mainly mediated by the membrane fatty acid transporter CD36, also known as scavenger receptor B2 [9], although palmitate can also enter cells by other mechanisms, including direct membrane interactions, albumin-mediated transfer, and lipoprotein lipase-mediated uptake [10]. Accumulating evidence suggests a critical role by palmitic acid in modulating the activation of pattern recognition receptors in innate immune cells (Figure 1). Indeed, accumulating evidence reveals that although not through direct engagement of Toll-like receptors (TLRs), palmitate can modulate TLR downstream signaling in response to their ligand stimulation [11,12]. Palmitate is believed to be a TLR4 agonist that promotes macrophage activation and lipid metabolism-associated inflammation. Recently, however, it has been demonstrated that palmitate-induced inflammatory effects are not triggered by the direct binding of palmitate to TLR4, but through a combination of palmitate-mediated and TLR4-dependent priming, which alters cellular lipid metabolic pathways, gene expression, and membrane lipid composition, the prerequisite changes that are ...
Recent studies have revealed that dysregulated Rab small GTPase-mediated vesicle trafficking pathways are associated with cancer progression. However, whether any of the Rabs plays a suppressor role in cancer stemness is least explored. Rab37 has been postulated as a tumor suppressive small GTPase for trafficking anti-tumor cargos. Here, we report a previously uncharacterized mechanism by which Rab37 mediates exocytosis of secreted frizzled-related protein-1 (SFRP1), an extracellular antagonist of Wnt, to suppress Wnt signaling and cancer stemness in vitro and in vivo. Reconstitution experiments indicate that SFRP1 secretion is crucial for Rab37-mediated cancer stemness suppression and treatment with SRPP1 recombinant protein reduces xenograft tumor initiation ability. Clinical results confirm that concordantly low Rab37, low SFRP1, and high Oct4 stemness protein expression profile can be used as a biomarker to predict poor prognosis in lung cancer patients. Our findings reveal that Rab37-mediated SFRP1 secretion suppresses cancer stemness, and dysregulated Rab37-SFRP1 pathway confers cancer stemness via the activation of Wnt signaling. Rab37-SFRP1-Wnt axis could be a potential therapeutic target for attenuating lung cancer stemness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.