The nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) has been shown to interact with a variety of cellular proteins and implicated in the regulation of cell growth, interferon resistance, and other cellular signaling pathways, but the role of NS5A in HCV pathogenesis has not been firmly established. To further characterize this multifunctional protein, we instigated the studies of the subcellular localization of NS5A in a hepatoma cell line. NS5A was localized to the perinuclear membrane structures, including the endoplasmic reticulum (ER) and the Golgi apparatus, by immunofluorescence staining and confocal microscopy. In addition, it was also associated with the surface of cytoplasmic globular structures when expressed alone or as a part of the NS3-5B polyprotein. Oil red O staining revealed that these globular structures were lipid droplets, where the HCV core protein was also localized. The association of NS5A with intracellular membrane was further confirmed by membrane flotation analysis. To determine whether NS5A interacts with any cellular lipid-binding protein, we performed yeast two-hybrid screening in both HepG2 and human liver cDNA libraries. Apolipoprotein A1 (apoA1), one of the protein components of high-density lipoprotein (HDL) particles, was identified by two independent screening processes. The interaction between NS5A and apoA1 was confirmed by both in vitro pull-down and in vivo coimmunoprecipitation experiments. Immunofluorescence staining revealed a significant colocalization of NS5A and apoA1 in the Golgi apparatus. Our results established an association of NS5A with lipid droplets and apoA1, suggesting that NS5A, together with the core protein, may play a role in the pathogenesis of the derangement of lipid metabolism, contributing to liver steatosis commonly observed in hepatitis C.
Recurrent chromosomal aberrations are often observed in hepatocellular carcinoma (HCC), but little is known about the functional non-coding sequences, particularly microRNAs (miRNAs), at the chromosomal breakpoints in HCC. Here we show that 22 miRNAs are often amplified or deleted in HCC. MicroRNA-151 (miR-151), a frequently amplified miRNA on 8q24.3, is correlated with intrahepatic metastasis of HCC. We further show that miR-151, which is often expressed together with its host gene FAK, encoding focal adhesion kinase, significantly increases HCC cell migration and invasion in vitro and in vivo, mainly through miR-151-5p, but not through miR-151-3p. Moreover, miR-151 exerts this function by directly targeting RhoGDIA, a putative metastasis suppressor in HCC, thus leading to the activation of Rac1, Cdc42 and Rho GTPases. In addition, miR-151 can function synergistically with FAK to enhance HCC cell motility and spreading. Thus, our findings indicate that chromosome gain of miR-151 is a crucial stimulus for tumour invasion and metastasis of HCC.
Hepatitis C virus (HCV) NS5A is a phosphoprotein that possesses a cryptic trans-activation activity. To investigate its potential role in viral replication, we searched for the cellular proteins interacting with NS5A protein by yeast two-hybrid screening of a human hepatocyte cDNA library. We identified a newly discovered soluble N-ethylmaleimide-sensitive factor attachment protein receptor-like protein termed human vesicle-associated membrane protein-associated protein of 33 kDa (hVAP-33). In vitro binding assay and in vivo coimmunoprecipitation studies confirmed the interaction between hVAP-33 and NS5A. Interestingly, hVAP-33 was also shown to interact with NS5B, the viral RNA-dependent RNA polymerase. NS5A and NS5B bind to different domains of hVAP-33: NS5A binds to the C-terminus, whereas NS5B binds to the N-terminus of hVAP-33. Immunofluorescent staining showed a significant colocalization of hVAP-33 with both NS5A and NS5B proteins. hVAP-33 contains a coiled-coil domain followed by a membrane-spanning domain at its C-terminus. Cell fractionation analysis revealed that hVAP-33 is predominantly associated with the ER, the Golgi complex, and the prelysosomal membrane, consistent with its potential role in intracellular membrane trafficking. These interactions provide a mechanism for membrane association of the HCV RNA replication complex and further suggest that NS5A is a part of the viral RNA replication complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.