A three-dimensionally ordered macroporous (3DOM) Li3V2(PO4)3/C cathode material with small-sized macropores (50-140 nm) is successfully synthesized using a colloidal crystal array. The 3DOM architecture is built up from fully densely sintered Li3V2(PO4)3/C nanocomposite ceramics particles. Such a 3DOM Li3V2(PO4)3/C micrometer sized particle combines the advantages of both Li3V2(PO4)3 nanocrystal and micrometer sized particle. The resultant 3DOM Li3V2(PO4)3/C nanocomposite exhibits a stable and highly reversible discharge capacity up to 151 mA g(-1) at 0.1 C, and an excellent high-rate capability of 132 mA g(-1) at 5 C in the voltage range of 3.0-4.4 V. Compared to the corresponding bulk nanocomposite, the 3DOM Li3V2(PO4)3/C cathode exhibits a significantly improved high-rate performance, which promises new opportunities in the development of high energy and high power lithium-ion batteries.
Exploring a new method to fabricate small-sized nanofibers is essential to achieve superior performances for energy conversion and storage devices. Here, a novel soft-template strategy is developed to synthesize a three-dimensionally ordered macroporous (3DOM) architecture constructed from small-sized nanofibers. The effectiveness of a nanofiber-assembled three-dimensional inverse opal material as an electrode for high-rate lithium-ion batteries is demonstrated. The small-sized Li2FeSiO4/C composite nanofibers with a diameter of 20-30 nm are grown by employing a tri-block copolymer P123 as a structure directing agent. Accordingly, the macro-mesoporous hierarchical 3DOM architecture constructed from Li2FeSiO4/C nanofibers is further templated from P123 for the nanofibers and a polystyrene colloidal crystal array for the 3DOM architecture. We find that the thermal stability of the nanofiber morphology depends on the self-limited growth of Li2FeSiO4 nanocrystals in a crystalline-amorphous hybrid. As a cathode for a lithium-ion battery, the 3D hierarchical macro-mesoporous cathodes exhibit outstanding high-rate and ultralong-life performances with a capacity retention of 84% after 1500 cycles at 5 C in the voltage window of 1.5-4.5 V, which is greatly improved compared with a simple 3DOM Li2FeSiO4/C nanocomposite.
Li2FeSiO4@C/Fe nanocomposites have been synthesized by solution-processable approaches, which exhibit a superior rate performance as a cathode material for lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.