SUMMARYWith the recent explosion of geographic data generated by smartphones, sensors, and satellites, a data storage that can handle the massive volume of data and support high-computational spatial queries is becoming essential. Although key-value stores efficiently handle large-scale data, they are not equipped with effective functions for supporting geographic data. To solve this problem, in this paper, we present G-HBase, a high-performance geographical database based on HBase, a standard keyvalue store. To index geographic data, we first use Geohash as the rowkey in HBase. Then, we present a novel partitioning method, namely binary Geohash rectangle partitioning, to support spatial queries. Our extensive experiments on real datasets have demonstrated an improved performance with k nearest neighbors and range query in G-HBase when compared with SpatialHadoop, a state-of-the-art framework with native support for spatial data. We also observed that performance of spatial join in G-HBase is on par with SpatialHadoop and outperforms SJMR algorithm in HBase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.