Photothermal deicing is a noncontact, economically, efficient, and environmentally friendly melting/preventing ice method. Obtaining a cheap, easily fabricated material with high photothermal conversion and deicing efficiency is a challenge. Here, carbon-based photothermal superhydrophobic materials with thermal insulation micropores were prepared by using the salt-template. We demonstrate that the microholes array structure can enhance light absorption and hydrophobicity of the material, and the micropores structure can inhibit the heat transfer from the surface to the subcooled substrate, which synergistically greatly enhances the photothermal conversion. A heat transfer model was established to clarify the influence mechanisms of air cushion on interfacial heat transfer during the photothermal anti-icing and deicing process. The selfcleaning, flexibility, mechanical, and chemical stability tests show that the material has the potential for outdoor application. The prepared materials with high photothermal deicing efficiency provide a new way for the anti-icing and deicing of outdoor equipment.
A droplet impinging on a superhydrophobic substrate in an electric field is an important process in droplet manipulation and electrostatic spraying. Here, the entire impinging dynamic of the droplet in a vertical electric field is studied by a visualization experiment and numerical simulation with OpenFOAM. We investigate the effect of an electrostatic force on droplet impact in depth, where four ejection modes and three rebound modes are found experimentally. In particular, the filamentous ejecting phenomenon occurs after a droplet impinging on a superhydrophobic substrate is first discovered. In the numerical simulation, the strong coupling between the dynamic distribution of the interface electric charge and the evolution of the droplet profile can lead to different ejection modes, and the different ejection behaviours are caused by the combined effects of electrostatic pressure, capillary pressure, dynamic pressure and static pressure on the droplet apex. A charge scaling law for the ejection droplets is proposed. Furthermore, a set of theoretical models is established, which can successfully predict the threshold electric capillary number for different droplet ejection modes. The results reveal some important characteristics for a droplet impinging on a superhydrophobic surface in an electric field, which could facilitate the design of electrically operated droplet equipment and guide the safe and stable operation of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.