Highlights d High-alcohol-producing strains of Klebsiella pneumoniae exist in humans d HiAlc Kpn is associated with NAFLD in a human cohort d Transplant of HiAlc Kpn into mice causes NAFLD d Feeding mice glucose led to detectable blood alcohol, suggesting a biomarker for NAFLD
BackgroundMastitis, which affects nearly all lactating mammals including human, is generally thought to be caused by local infection of the mammary glands. For treatment, antibiotics are commonly prescribed, which however are of concern in both treatment efficacy and neonate safety. Here, using bovine mastitis which is the most costly disease in the dairy industry as a model, we showed that intestinal microbiota alone can lead to mastitis.ResultsFecal microbiota transplantation (FMT) from mastitis, but not healthy cows, to germ-free (GF) mice resulted in mastitis symptoms in mammary gland and inflammations in serum, spleen, and colon. Probiotic intake in parallel with FMT from diseased cows led to relieved mastitis symptoms in mice, by shifting the murine intestinal microbiota to a state that is functionally distinct from either healthy or diseased microbiota yet structurally similar to the latter. Despite conservation in mastitis symptoms, diseased cows and mice shared few mastitis-associated bacterial organismal or functional markers, suggesting striking divergence in mastitis-associated intestinal microbiota among lactating mammals. Moreover, an “amplification effect” of disease-health distinction in both microbiota structure and function was apparent during the cow-to-mouse FMT.ConclusionsHence, dysbiosis of intestinal microbiota may be one cause of mastitis, and probiotics that restore intestinal microbiota function are an effective and safe strategy to treat mastitis.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0578-1) contains supplementary material, which is available to authorized users.
Co-injection of zygotes with Cas9 mRNA and sgRNA has been proven to be an efficient gene-editing strategy for genome modification of different species. Genetic engineering in pigs holds a great promise in biomedical research. By co-injection of one-cell stage embryos with Cas9 mRNA and Npc1l1 sgRNA, we achieved precise Npc1l1 targeting in Chinese Bama miniature pigs at the efficiency as high as 100%. Meanwhile, we carefully analyzed the Npc1l1 sgRNA:Cas9-mediated on- and off-target mutations in various somatic tissues and ovaries, and demonstrated that injection of zygotes with Cas9 mRNA and sgRNA is an efficient and reliable approach for generation of gene-modified pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.