Platinum (Pt) is the state-of-the-art catalyst for oxygen reduction reaction (ORR), but its high cost and scarcity limit its large-scale use. However, if the usage of Pt reduces to a sufficiently low level, this critical barrier may be overcome. Atomically dispersed metal catalysts with high activity and high atom efficiency have the possibility to achieve this goal. Herein, we report a locally distributed atomic Pt-Co nitrogen-carbon-based catalyst (denoted as A-CoPt-NC) with high activity and robust durability for ORR (267 times higher than commercial Pt/C in mass activity). The A-CoPt-NC shows a high selectivity for the 4e pathway in ORR, differing from the reported 2e pathway characteristic of atomic Pt catalysts. Density functional theory calculations suggest that this high activity originates from the synergistic effect of atomic Pt-Co located on a defected C/N graphene surface. The mechanism is thought to arise from asymmetry in the electron distribution around the Pt/Co metal centers, as well as the metal atoms' coordination with local environments on the carbon surface. This coordination results from N8V4 vacancies (where N8 represents the number of nitrogen atoms and V4 indicates the number of vacant carbon atoms) within the carbon shell, which enhances the oxygen reduction reaction via the so-called synergistic effect.
Newly N-S-C coordination-structured active sites, originating from the integrity of edged thiophene S, graphitic N, and pentagon defects, were reconstructed by N-modified S defects in carbon aerogel with a 3D hierarchical macro-mesomicroporous structure. This metal-free material exhibited outstanding oxygen reduction reaction (ORR) activity (e.g., half-wave potentials of 0.76 V in 0.5 M H 2 SO 4 and 0.1 M HClO 4 ; 0.85 V in 0.1 M KOH) with good stability and high current density in both acidic and alkaline electrolytes. The experimental and computational results reveal that the pentagon S defect is essential for the ORR in acidic electrolytes because it provides a remarkable increase in reactivity. One graphitic-type N in the meta-position of the pentagon defect further significantly improves the reactivity as a result of locally precise control of the electronic structure, thus forming highly active sites for ORR in acid.
Layered titanate nanofibers can absorb bivalent ions from waste water via an ion exchange process. The sorption induces a considerable deformation of the layered structure, thus trapping the cations in the fibers permanently. Therefore, the fibers are desirable sorbents for the removal of toxic, radioactive Ra(2+) and Sr(2+) ions from water and subsequent safe disposal thereof.
These results suggest that AT2 receptor stimulation has a protective effect on ischemic brain lesions, at least partly through the modulation of cerebral blood flow and superoxide production.
Palladium (Pd)-catalyzed cross-coupling reactions are among the most important methods in organic synthesis. We report the discovery of highly efficient and green photocatalytic processes by which cross-coupling reactions, including Sonogashira, Stille, Hiyama, Ullmann, and Buchwald−Hartwig reactions, can be driven with visible light at temperatures slightly above room temperature using alloy nanoparticles of gold and Pd on zirconium oxide, thus achieving high yields. The alloy nanoparticles absorb visible light, and their conduction electrons gain energy, which is available at the surface Pd sites. Results of the density functional theory calculations indicate that transfer of the light excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. When the light intensity was increased, a higher reaction rate was observed, because of the increased population of photoexcited electrons. The irradiation wavelength also has an important impact on the reaction rates. Ultraviolet irradiation can drive some reactions with the chlorobenzene substrate, while visible light irradiation failed to, and substantially improve the yields of the reactions with the bromobenzene substrate. The discovery reveals the possibility of using low-energy and -density sources such as sunlight to drive chemical transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.