Fuel cell hybrid electric vehicle (FCHEV) is one of the most efficient technologies to solve the problems of the energy shortage and the air pollution caused by the internal-combustion engine vehicles, and its performance strongly depends on the powertrains’ matching and its energy control strategy. The theoretic matching method only based on the theoretical equation of kinetic equilibrium, which is a traditional method, could not take fully use of the advantages of FCHEV under a certain driving cycle because it doesn’t consider the target driving cycle. In order to match the powertrain that operates more efficiently under the target driving cycle, the matching method based on driving cycle is studied. The powertrain of a fuel cell hybrid electric bus (FCHEB) is matched, modeled and simulated on the AVL CRUISE. The simulation results show that the FCHEB has remarkable power performance and fuel economy.
FlexRay bus is considered as a more promising bus in the future with the performance of real-time, scalable, and fault-tolerant. In this paper we will design an electric vehicle battery management system (BMS) based on FlexRay bus, including the hardware design, the SoC estimation method, FlexRay protocol design and software development. The test bench experiment results show the system design is reasonable and feasible.Keywords- FlexRay, BMS, Li-ion battery,SoC, Design
This paper presents a control strategy of torque distribution for electric vehicles with axles separately driven. With two motors driving the front and rear axle separately, the torque distribution between axles can be easily achieved. To obtain good traction performance and stability of the electric vehicle, three control modes appropriate for different driving conditions are adopted: the routine control of equal distribution; the distribution based on Sliding Mode Control (SMC) to minimize wheel slip difference between axles; axles separately antiskid control based on SMC. With MATLAB/SimDriveline software, a forward vehicle simulation model was set up. The simulation results show that the torque distribution control strategy of three control modes can maintain the wheel slip in a reasonable range regardless of driving conditions, improving both vehicle traction ability and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.