In this paper several equivalent formulations for the quadratic binary programming problem are presented. Based on these formulations we describe four different kinds of strategies for estimating lower bounds of the objective function, which can be integrated into a branch and bound algorithm for solving the quadratic binary programming problem. We also give a theoretical explanation for forcing rules used to branch the variables efficiently, and explore several properties related to obtained subproblems. From the viewpoint of the number of subproblems solved, new strategies for estimating lower bounds are better than those used before. A variant of a depth-first branch and bound algorithm is described and its numerical performance is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.