Abstract-Monocytes/macrophages are present in all stages of atherosclerosis. Although many of their activities depend to various extents on changes in intracellular Ca 2ϩ concentration ([Ca 2ϩ ] i ), mechanisms regulating [Ca 2ϩ ] i in these cells remain unclear. We aimed to explore the role of myosin light chain kinase (MLCK) in Ca 2ϩ signaling in freshly isolated human monocytes/macrophages. Large capacitative Ca 2ϩ entry (CCE) was observed under fura 2 fluoroscopy in human monocytes/macrophages treated with thapsigargin and cyclopiazonic acid. ML-9 and wortmannin, 2 structurally different inhibitors of MLCK, dose-dependently (1 to 100 mol/L) prevented CCE and completely did so at 100 mol/L, whereas inhibitors of tyrosine kinase and protein kinase C had only partial effects. Western blotting showed that thapsigargin significantly caused myosin light chain phosphorylation, which was almost completely blocked by ML-9 (100 mol/L) and wortmannin (100 mol/L). ML-9 also dose-dependently (1 to 100 mol/L) inhibited this phosphorylation, which was well correlated with its inhibition of CCE. Transfection with MLCK antisense completely prevented CCE in response to thapsigargin and cyclopiazonic acid, whereas MLCK sense had no effect.
Hyperinsulinemia is closely related to coronary artery disease. Endothelial cells are important for the control of vascular tone, and dysfunction of endothelial cells has been implicated in coronary artery disease. The direct effects of insulin on coronary endothelial cells are nonetheless unknown. In this study, the acute effects of high-dose insulin were investigated on agonist-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) in porcine coronary endothelial cells and coronary relaxation. Bradykinin (10 n M ) and cyclopiazonic acid (100 microM), an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, provoked large increases in [Ca(2+)](i) in coronary endothelial cells. This increase was dose-dependently inhibited by a 10-min preincubation with high doses of insulin (10, 30, 100 mU/ml). Under Ca(2+)-free conditions, bradykinin and cyclopiazonic acid provoked transient, small increases in [Ca(2+)](i). These increases were not affected by pretreatment with insulin (100 mU/ml). Bradykinin (1, 10, 100, 1,000 n M ) and cyclopiazonic acid (10 microM) significantly relaxed porcine coronary artery rings precontracted with histamine (1 microM). The vasodilator effects of bradykinin and cyclopiazonic acid were dose-dependently inhibited by insulin. These acute effects were not observed at physiologic concentrations. Our data indicate that high-dose insulin inhibits agonist-induced Ca(2+) response in coronary endothelial cells and attenuates agonist-induced coronary vasodilatation. The study suggests that hyperinsulinemia might be associated with coronary artery disease via derangement of endothelial Ca(2+)-dependent functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.