We report the enhancement of the thermoelectric power (TEP) in graphene with extremely low disorder. At high temperature we observe that the TEP is substantially larger than the prediction of the Mott relation, approaching to the hydrodynamic limit due to strong inelastic scattering among the charge carriers. However, closer to room temperature the inelastic carrier-optical-phonon scattering becomes more significant and limits the TEP below the hydrodynamic prediction. We support our observation by employing a Boltzmann theory incorporating disorder, electron interactions, and optical phonons.
We consider the interplay of disorder and interactions upon the gapless surface states of 3D topological superconductors. The combination of topology and superconducting order inverts the action of time-reversal symmetry, so that extrinsic time-reversal invariant surface perturbations appear only as "pseudomagnetic" fields (Abelian and non-Abelian vector potentials, which couple to spin and valley currents). The main effect of disorder is to induce multifractal scaling in surface state wave functions. These critically delocalized, yet strongly inhomogeneous states renormalize interaction matrix elements relative to the clean system. We compute the enhancement or suppression of interaction scaling dimensions due to the disorder exactly, using conformal field theory. We determine the conditions under which interactions remain irrelevant in the presence of disorder for symmetry classes AIII and DIII. In the limit of large topological winding numbers (many surface valleys), we show that the effective field theory takes the form of a Finkel'stein nonlinear sigma model, augmented by the Wess-Zumino-Novikov-Witten term. The sigma model incorporates interaction effects to all orders and provides a framework for a controlled perturbative expansion; the inverse spin or thermal conductance is the small parameter. For class DIII, we show that interactions are always irrelevant, while in class AIII, there is a finite window of stability, controlled by the disorder. Outside of this window, we identify new interaction-stabilized fixed points.
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topological nodal points in the spectrum of Andreev states. When the scattering matrix possesses time-reversal symmetry, the gap closing occurs at special stationary points that are topologically trivial as they carry vanishing Berry fluxes. In contrast, for the time-reversal broken case we find topological monopoles of the Berry curvature and corresponding phase transition between states with different Chern numbers. The latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic flux piercing through the junction area in a three-terminal geometry. The topological regime of the system can be identified by nonlocal conductance quantization that we compute explicitly for a particular parametrization of the scattering matrix in the case where each reservoir is connected by a single channel.Comment: 5 pages, 3 figure
We explore non-adiabatic particle production for N f coupled scalar fields in a time-dependent background with stochastically varying effective masses, cross-couplings and intervals between interactions. Under the assumption of weak scattering per interaction, we provide a framework for calculating the typical particle production rates after a large number of interactions. After setting up the framework, for analytic tractability, we consider interactions (effective masses and cross couplings) characterized by series of Dirac-delta functions in time with amplitudes and locations drawn from different distributions. Without assuming that the fields are statistically equivalent, we present closed form results (up to quadratures) for the asymptotic particle production rates for the N f = 1 and N f = 2 cases. We also present results for the general N f > 2 case, but with more restrictive assumptions. We find agreement between our analytic results and direct numerical calculations of the total occupation number of the produced particles, with departures that can be explained in terms of violation of our assumptions.We elucidate the precise connection between the maximum entropy ansatz (MEA) used in Amin & Baumann (2015) and the underlying statistical distribution of the self and cross couplings. We provide and justify a simple to use (MEA-inspired) expression for the particle production rate, which agrees with our more detailed treatment when the parameters characterizing the effective mass and cross-couplings between fields are all comparable to each other. However, deviations are seen when some parameters differ significantly from others. We show that such deviations become negligible for a broad range of parameters when N f 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.