BackgroundSchistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology.Methodology/Principal FindingsWe isolated, from S. japonicum, insulin receptors 1 (SjIR-1) and 2 (SjIR-2) sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2). SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR), suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR) implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells.ConclusionsAdult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against schistosomiasis.
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drugpraziquantel-is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Schistosomiasis, caused mainly by S. mansoni, S. haematobium and S. japonicum, continues to be a serious tropical disease and public health problem resulting in an unacceptably high level of morbidity in countries where it is endemic. Praziquantel, the only drug currently available for treatment, is unable to kill developing schistosomes, it does not prevent re-infection and its continued extensive use may result in the future emergence of drug-resistant parasites. This scenario provides impetus for the development and deployment of anti-schistosome vaccines to be used as part of an integrated approach for the prevention, control and eventual elimination of schistosomiasis. This review considers the present status of candidate vaccines for schistosomiasis, and provides some insight on future vaccine discovery and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.