Melanoma and nonmelanoma skin cancers are among the most prevalent cancers in the human population. Solar ultraviolet radiation is considered a major etiological factor but the relationship between dose, timing, and nature of exposure to tumor development is still unclear. Free radicals are generated by normal physiologic processes, including aerobic metabolism and inflammatory response, but may inflict cellular damage when generation is increased and antioxidant defense mechanisms are overwhelmed. Important findings supporting the free radical hypothesis in skin carcinogenesis are: (1) Reactive oxygen species (ROS) are generated in UVA- and UVB-irradiated skin in excessive doses, (2) the natural cutaneous antioxidant defense is impaired upon UV-exposure, (3) free radicals are involved in all steps of carcinogenesis, (4) supplementation with antioxidants can inhibit skin carcinogenesis, and (5) conditions that increase ROS generation enhance photocarcinogenesis. These findings provide a promising rationale for the development of powerful new antioxidant strategies in the prevention and therapy of skin cancer.
There is increasing evidence for the generation of reactive oxygen species in skin upon ultraviolet exposure, but little is known about their pathophysiologic relevance in human skin in vivo. We hypothesized that chronic and acute photodamage is mediated by depleted antioxidant enzyme expression and increased oxidative protein modifications. Biopsies from patients with histologically confirmed solar elastosis, from non-ultraviolet-exposed sites of age-matched controls, and from young subjects were analyzed. To evaluate the influence of acute ultraviolet exposures, buttock skin of 12 healthy subjects was irradiated repetitively on 10 d with a solar simulator and compared intraindividually to non-ultraviolet-treated contralateral sites. The antioxidant enzymes catalase, copper-zinc superoxide dismutase, and manganese superoxide dismutase were investigated by immunohistochemistry. Protein carbonyls were analyzed by immunohistochemical and immunoblotting techniques in human skin and in cell models. Whereas overall expression of antioxidant enzymes was very high in the epidermis, low baseline levels were found in the dermis. In photoaged skin, a significant depletion of antioxidant enzyme expression was observed within the stratum corneum and in the epidermis. Importantly, an accumulation of oxidatively modified proteins was found specifically within the upper dermis of photoaged skin. Upon acute ultraviolet exposure of healthy subjects, depleted catalase expression and increased protein oxidation were detected. Exposures of keratinocytes and fibroblasts to ultraviolet B, ultraviolet A, and H2O2 led to dose-dependent protein oxidation and thus confirmed in vivo results. In conclusion, the correlation between photodamage and protein oxidation was demonstrated for the first time, which hence may be a relevant pathophysiologic factor in photoaging.
The evolution of the electron energy distribution function (EEDF) against pressure is investigated in the capacitive mode of inductively coupled plasma (ICP). A significant change in the EEDFs is observed: a bi-Maxwellian EEDF at low pressure (⩽10 mTorr) evolves into a Druyvestein-like EEDF at high pressure (⩾50 mTorr) in the capacitive mode (low-density mode) while the EEDFs in the inductive mode (high-density mode) does not evolve like in the capacitive mode due to high electron–electron collisions. This EEDF transition in the capacitive mode of ICP is similar to that in the capacitive coupled plasma (CCP) reported in literature [V. A. Godyak and R. B. Piejak, Phys. Rev. Lett. 65, 996(1990)] as pressure increases. This observation directly shows that the electron heating mechanism of the capacitive mode in the ICP is the same as that in the CCP, as expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.