AR-23 is a melittin-related peptide with 23 residues. Like melittin, its high α-helical amphipathic structure results in strong bactericidal activity and cytotoxicity. In this study, a series of AR-23 analogues with low amphipathicity were designed by substitution of Ala1, Ala8 and Ile17 with positively charged residues (Arg or Lys) to study the effect of positively charged residue distribution on the biological viability of the antimicrobial peptide. Substitution of Ile17 on the nonpolar face with positively charged Lys dramatically altered the hydrophobicity, amphipathicity, helicity and the membrane-penetrating activity against human cells as well as the haemolytic activity of the peptide. However, substitution on the polar face only slightly affected the peptide biophysical properties and biological activity. The results indicate that the position rather than the number of positively charged residue affects the biophysical properties and selectivity of the peptide. Of all the analogues, A(A1R, A8R, I17K), a peptide with Ala1-Arg, Ala8-Arg and Ile17-Lys substitutions, exhibited similar bactericidal activity and anti-biofilm activity to AR-23 but had much lower haemolytic activity and cytotoxicity against mammalian cells compared with AR-23. Therefore, the findings reported here provide a rationalization for peptide design and optimization, which will be useful for the future development of antimicrobial agents.
In the era of new and mostly effective therapeutic protocols, multiple myeloma still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease is in fact a sequel to drug resistant phenotypes persisting initially or emerging in the course of treatment. Furthermore, the heterogeneous nature of multiple myeloma makes treating patients with the same drug challenging because finding a drugable oncogenic process common to all patients is not yet feasible, while our current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis is outstanding. Nonetheless, bone marrow microenvironment components are well known as playing critical roles in myeloma tumor cell survival and environment-mediated drug resistance happening most possibly in all myeloma patients. Generally speaking, however; real mechanisms underlying drug resistance in multiple myeloma are not completely understood. The present review will discuss the latest findings and concepts in this regard. It reviews the association of important chromosomal translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways (e.g. NFκB) with drug response in clinical and experimental investigations. It will also highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma cancer stem cells could contribute to drug resistance in multiple myeloma.
Background:Small molecule MIRA-1 induced mutant p53-dependent apoptosis in several types of solid tumours. However, anti-tumour activity of MIRA-1 in haematological malignancies including multiple myeloma (MM) is unknown. In this study, we evaluated the effect of MIRA-1 in MM.Methods:We examined the anti-tumour activity of MIRA-1 alone or in combination with current anti-myeloma agents in a panel of MM cell lines, primary MM samples, and in a mouse xenograft model of MM.Results:MIRA-1 treatment resulted in the inhibition of viability, colony formation, and migration and increase in apoptosis of MM cells irrespective of p53 status accompanied by upregulation of Puma and Bax and downregulation of Mcl-1 and c-Myc. Genetic knockdown of p53 did not abrogate apoptotic response of MIRA-1. MIRA-1 triggered activation of PERK and IRE-α leading to splicing of XBP1 indicating an association of endoplasmic reticulum stress response. Furthermore, combined treatment of MIRA-1 with dexamethasone, doxorubicin or velcade displayed synergistic response in MM cells. Importantly, MIRA-1 alone or in combination with dexamethasone retarded tumour growth and prolonged survival without showing any untoward toxicity in the mice bearing MM tumour.Conclusions:Our data provide the preclinical framework for clinical evaluation of MIRA-1 as a novel therapeutic agent to improve patient outcome in MM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.