We have measured the temperature T dependence of the proton Zeeman relaxation rate R in polycrystalline 1,3-di-t-butylbenzene (1, adopt two two-correlation-time models using Bloembergen-Purcell-Pound spectral densities; one based on the dynamical inequivalence of the methyl groups in each t-butyl group and one based on the dynamical inequivalence of different t-butyl groups, either because of intramolecular effects or because of intermolecular (crystal-structure) effects. In the low-temperature phase of 1,3-DTB, R (e, P is unusual in that it is Larmor-frequency dependent in the short-correlation-time limit (i.e. , temperatures above the relaxation rate maximum). We have fit the data with a Havriliak-Negami spectral density (which reduces to a Davidson-Cole spectral density when one of the parameters becomes unity which, in turn, reduces to a Bloembergen-Purcell-Pound spectral density when an additional parameter becomes unity). The fit, with an effective activation energy of 10+3 kJ/mol, suggests that this low-temperature phase in 1,3-DTB is a glassy state. We relate the Havriliak-Negami spectral density to the Dissado-Hill spectral density which has a fundamental microscopic basis and which has been used to interpret a vast quantity of dielectric relaxation data as well as some mechanical relaxation data.
Renewable and sustainable energies exhibit promising performance while serving as the power supply of a wireless sensor especially located in marine waters. Various microgenerators have been developed to harvest wave energy. However, the conversion ability from a dynamic oscillating source of wave is crucial to enhance their effectiveness in practical applications. In this paper, a new piezoelectric converter system is proposed to harvest the kinetic energy from ocean waves. The vortex-induced effect in an air channel enhances the vibration performance, improving the energy harvesting efficiency. The system comprises an oscillating water column (OWC) air chamber, a bluff body, and a piezoelectric piece for electromechanical transduction. The fluid–solid–electric coupling finite element method was used to investigate the relation between the output voltage and geometrical parameters, including the size and position of the piezoelectric cantilever beam, which is based on the user-defined function of the ANSYS. It is found that the bluff body in the outlet channel above the air chamber induced high-frequency vortex shedding vibration. The regular wave rushed into the air chamber with a frequency of 0.285 Hz and extruded the air across the bluff body in the outlet channel. This incurred the fluctuation of the air pressure and excited the piezoelectric cantilever beam vibration with a high frequency of 233 Hz in the wake region. Furthermore, a continuous electrical output with a peak voltage of 6.11 V is generated, which has potential applications for the wireless sensors on the marine buoy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.