Mercaptoacetic acid (RSH)-capped CdS nanocrystals (NCs) was demonstrated to be electrochemically reduced during potential scan and react with the coreactant S2O8(2-) to generate strong electrochemiluminescence (ECL) in aqueous solution. Based on the ECL of CdS NCs, a novel label-free ECL biosensor for the detection of low-density lipoprotein (LDL) has been developed by using self-assembly and gold nanoparticle amplification techniques. The biosensor was prepared as follows: The gold nanoparticles were first assembled onto a cysteamine monolayer on the gold electrode surface. This gold nanoparticle-covered electrode was next treated with cysteine and then reacted with CdS NCs to afford a CdS NC-electrode. Finally, apoB-100 (ligand of LDL receptor) was covalently conjugated to the CdS NC-electrode. The modification procedure was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy, respectively. The resulting modified electrode was tested as ECL biosensor for LDL detection. The LDL concentration was measured through the decrease in ECL intensity resulting from the specific binding of LDL to apoB-100. The ECL peak intensity of the biosensor decreased linearly with LDL concentration in the range of 0.025-16 ng mL-1 with a detection limit of 0.006 ng mL-1. The CdS NCs not only showed high ECL intensity and good biocompatibility but also could provide more binding sites for apoB-100 loading. In addition, the gold nanoparticle amplification for protein ECL analysis was applied to the improvement of the detection sensitivity. Thus, the biosensor exhibited high sensitivity, good reproducibility, rapid response, and long-term stability.
MnO2 has been widely studied as the pseudo-capactive electrode material of high-performance supercapacitors for its large operating voltage, low cost, and environmental friendliness. However, it suffers from low conductivity and being hardly handle as the electrodes of supercapacitors especially with flexibility, which largely limit its electrochemical performance and application. Herein, we report a novel ternary composite paper composed of reduced graphene sheet (GR)-patched carbon nanotube (CNT)/MnO2, which has controllable structures and prominent electrochemical properties for a flexible electrode of the supercapacitor. The composite paper was prepared by electrochemical deposition of MnO2 on a flexible CNT paper and further adsorption of GR on its surface to enhance the surface conductivity of the electrode and prohibit MnO2 nanospheres from detaching with the electrode. The presence of GR was found remarkably effective in enhancing the initial electrochemical capacitance of the composite paper from 280 F/g to 486.6 F/g. Furthermore, it ensures the stability of the capacitance after a long period of charge/discharge cycles. A flexible CNT/polyaniline/CNT/MnO2/GR asymmetric supercapacitor was assembled with this composite paper as an electrode and aqueous electrolyte gel as the separator. Its operating voltage reached 1.6 V, with an energy density at 24.8 Wh/kg. Such a composite structure derived from a multiscale assembly can offer not only a robust scaffold loading MnO2 nanospheres but also a conductive network for efficient ionic and electronic transport; thus, it is potentially promising as a novel electrode architecture for high-performance flexible energy storage devices.
A strategy for label-free oligonucleotide (DNA) analysis has been proposed by measuring the DNA-morpholino hybridization hindered diffusion flux of probe ions Fe(CN)(6)(3-) through nanochannels of a porous anodic alumina (PAA) membrane. The flux of Fe(CN)(6)(3-) passing through the PAA nanochannels is recorded using an Au film electrochemical detector sputtered at the end of the nanochannels. Hybridization of the end-tethered morpholino in the nanochannel with DNA forms a negatively charged DNA-morpholino complex, which hinders the diffusion of Fe(CN)(6)(3-) through the nanochannels and results in a decreased flux. This flux is strongly dependent on ionic strength, nanochannel aperture, and target DNA concentration, which indicates a synergetic effect of steric and electrostatic repulsion effects in the confined nanochannels. Further comparison of the probe flux with different charge passing through the nanochannels confirms that the electrostatic effect between the probe ions and DNA dominates the hindered diffusion process. Under optimal conditions, the present nanochannel array-based DNA biosensor gives a detection limit of 0.1 nM.
Electrochemiluminescence (ECL)-based capacitance microscopy using a square-wave voltage is established unprecedentedly to realize the label-free visualization of species on electrode surfaces and cellular plasma membranes. The drop in the local capacitance upon the binding of species to the surface or to a cellular membrane is derived to induce a relatively larger potential drop (V dl) across the double layer on the local electrode surface, which is utilized to prompt enhanced ECL at the binding position. The square-wave voltage with a frequency of as high as 1.5 kHz is proven to be favorable for the discrimination of the local ECL from the surrounding signal. Using this new detection principle and resultant capacitance microscopy, carcinoembryonic antigens (CEA) at amounts of as low as 1 pg can be visualized. Further application of this approach permits the direct imaging of CEA antigens on single MCF-7 cells through the capacitance change after the formation of the antigen–antibody complex. Successful visualization of the analyte without any ECL tag will allow not only special capacitance microscopy for label-free bioassays but also a novel ECL detection approach for the sensitive detection of biomolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.