Sustainability and resilience are up-to-date considerations for urban developments in terms of flood mitigation. These considerations usually pose a new challenge to the urban planner because the achievement of a sustainable design through low impact development (LID) practices would be affected by the selection and the distribution of them. This study proposed a means to optimize the distribution of LIDs with the concept of considering the reduction of the flood peak and the hydrologic footprint residence (HFR). The study region is a densely populated place located in New Taipei City. This place has been developing for more than 40 years with completive sewer systems; therefore, the design must consider the space limitations. The flood reduction induced by each LID component under different rainfall return periods was estimated, and then the detention ponds were also conducted to compare the improvements. The results showed that the performance of LIDs dramatically decreased when the return periods were larger than ten years. A multi-objective genetic algorithm (MOGA) was then applied to optimize the spatial distribution of LIDs under different budget scenarios, and to decide the priority of locations for the LID configuration. Finally, the Monte Carlo test was used to test the relationship between the optimal space configuration of LIDs and the impermeability of the study region. A positive correlation was uncovered between the optimal allocation ratio and the impermeable rate of the partition. The study results can provide general guidelines for urban planners to design LIDs in urban areas.
The formulation of watershed management strategies to protect water resources threatened by soil erosion and sedimentation requires a thorough understanding of sediment sources and factors that drive soil movement in the watershed. This paper describes a study of medium-term water-driven soil erosion rates in a mountainous watershed of the Shihmen Reservoir in Taiwan. A total of 60 sampling sites were selected along a hillslope. At each sampling site, the inventory 137 Cs activity was determined and then calculated with the diffusion and migration model to derive soil erosion rates. The rates are one to two orders of magnitude lower than estimates using the Universal Soil Loss Equation, a soil erosion model often used in Taiwan. Results of multiple regression analysis indicate that the spatial variability of soil erosion rates is associated with the relative position of a sampling site to the nearest ridge and soil bulk densities (r 2 = 0.33, p \ 0.01). Finally, the patterns of soil redistribution rates on the hillslope follow the 137 Cs hillslope model as soil erosion increases in the downslope direction. No deposition site is found at footslope because soil deposition is swept away by regular flooding along the stream channel. This study is an important first step in using 137 Cs as a tracer of soil redistribution in mountainous watersheds of Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.