BaTiO3-based piezoelectric ceramics have attracted considerable attention in recent years due to their tunable phase structures and good piezoelectric properties. In this work, the (1 − x)BaTiO3−xCaSnO3 (0.00 ≤ x ≤ 0.16, abbreviated as BT−xCS) solid solutions, were prepared by traditional solid-state reaction methods. The phase transitions, microstructure, dielectric, piezoelectric, and ferroelectric properties of BT-xCS have been investigated in detail. The coexistence of rhombohedral, orthorhombic, and tetragonal phases near room temperature, i.e., polymorphic phase transition (PPT), has been confirmed by X-ray diffraction and temperature-dependent dielectric measurements in the compositions range of 0.06 ≤ x ≤ 0.10. The multiphase coexistence near room temperature provides more spontaneous polarization vectors and facilitates the process of polarization rotation and extension by an external electric field, which is conducive to the enhancement of piezoelectric response. Remarkably, the composition of BT-0.08CS exhibits optimized piezoelectric properties with a piezoelectric coefficient d33 of 620 pC/N, electromechanical coupling factors kp of 58%, kt of 40%, and a piezoelectric strain coefficient d33* of 950 pm/V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.