In the aviation industry, foreign object debris (FOD) on airport runways is a serious threat to aircraft during takeoff and landing. Therefore, FOD detection is important for improving the safety of aircraft flight. In this paper, an unsupervised anomaly detection method called Multi-Scale Feature Inpainting (MSFI) is proposed to perform FOD detection in images, in which FOD is defined as an anomaly. This method adopts a pre-trained deep convolutional neural network (CNN) to generate multi-scale features for the input images. Based on the multi-scale features, a deep feature inpainting module is designed and trained to learn how to reconstruct the missing region masked by the multi-scale grid masks. During the inference stage, an anomaly map for the test image is obtained by computing the difference between the original feature and its reconstruction. Based on the anomaly map, the abnormal regions are identified and located. The performance of the proposed method is demonstrated on a newly collected FOD dataset and the public benchmark dataset MVTec AD. The results show that the proposed method is superior to other methods.
In recent years, aviation security has become an important area of concern as foreign object debris (FOD) on the airport pavement has a huge potential risk to aircraft during takeoff and landing. Therefore, accurate detection of FOD is important to ensure aircraft flight safety. This paper proposes a novel method to detect FOD based on random forest. The complexity of information in airfield pavement images and the variability of FOD make FOD features difficult to design manually. To overcome this challenge, this study designs the pixel visual feature (PVF), in which weight and receptive field are determined through learning to obtain the optimal PVF. Then, the framework of random forest employing the optimal PVF to segment FOD is proposed. The effectiveness of the proposed method is demonstrated on the FOD dataset. The results show that compared with the original random forest and the deep learning method of Deeplabv3+, the proposed method is superior in precision and recall for FOD detection. This work aims to improve the accuracy of FOD detection and provide a reference for researchers interested in FOD detection in aviation.
Tongue color classification serves as important assistance for traditional Chinese medicine (TCM) doctors to make a precise diagnosis. This paper proposes a novel two-step framework based on deep learning to improve the performance of tongue color classification. First, a semantic-based CNN called SegTongue is applied to segment the tongues from the background. Based on DeepLabv3+, multiple atrous spatial pyramid pooling (ASPP) modules are added, and the number of iterations of fusions of low-level and high-level information is increased. After segmentation, various classical feature extraction networks are trained using softmax and center loss. The experiment results are evaluated using different measures, including overall accuracy, Kappa coefficient, individual sensitivity, etc. The results demonstrate that the proposed framework with SVM achieves up to 97.60% accuracy in the tongue image datasets.
Differential Evolution (DE), a vector population based stochastic optimization method has been introduced to the public in 1995. During the last 25 years research on and with DE has reached an impressive state, yet there are still many open questions, In this paper ,An improved differential evolution (IDE) algorithm was presented for power system Dynamic economic dispatch(IDED), Dynamic economic dispatch (DED), an extension of the economic dispatch problem, is a method of scheduling the online generators with a predicted load demand over acertain period of time taking into account the various constraints imposed on the system operation. The results indicate that IDE algorithm outperforms GA ,PSO and DE algorithms in solving DED problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.