Upon illumination visual arrestin translocates from photoreceptor cell bodies to rhodopsin and membrane-rich photosensory compartments - vertebrate outer segments or invertebrate rhabdomeres - where it quenches activated rhodopsin. Both the mechanism and function of arrestin translocation are unresolved and controversial. In dark-adapted photoreceptors of the fruitfly Drosophila, confocal immunocytochemistry shows arrestin (Arr2) associated with distributed photoreceptor endomembranes. Immunocytochemistry and live imaging of GFP-tagged Arr2 demonstrate rapid reversible translocation to stimulated rhabdomeres in stoichiometric proportion to rhodopsin photoisomerization. Translocation is very rapid in normal photoreceptors (time constant <10 s), and can also be resolved in the time course of electroretinogram recordings. Genetic elimination of key phototransduction proteins, including phospholipase C (PLC), Gq and the light-sensitive Ca2+ permeable TRP channels, slows translocation by 10-100 fold. Our results indicate that Arr2 translocation in Drosophila photoreceptors is driven by diffusion, but profoundly accelerated by phototransduction and Ca2+ influx.
Approximately 40 years ago, an elegant automatic-gain control was revealed in compound eye photoreceptors: In bright light, an assembly of small pigment granules migrates to the cytoplasmic face of the photosensitive membrane organelle, the rhabdomere, where they attenuate waveguide propagation along the rhabdomere. This migration results in a "longitudinal pupil" that reduces rhodopsin exposure by a factor of 0.8 log units. Light-induced elevation of cytosolic free Ca(2+) triggers the migration of pigment granules, and pigment granules fail to migrate in a mutant deficient in photoactivated TRP calcium channels. However, the mechanism that moves photoreceptor pigment granules remains elusive. Are the granules actively pulled toward the rhabdomere upon light, or are they instead actively pulled into the cytoplasm in the absence of light? Here we show that Ca(2+)-activated Myosin V (MyoV) pulls pigment granules to the rhabdomere. Thus, one of MyoV's several functions is also as a sensory-adaptation motor. In vitro, Ca(2+) both activates and inhibits MyoV motility; in vivo, its role is undetermined. This first demonstration of an in vivo role for Ca(2+) in MyoV activity shows that in Drosophila photoreceptors, Ca(2+) stimulates MyoV motility.
SummaryThe prototypical transient receptor potential (TRP) channel is the major light-sensitive, and Ca 2+ -permeable channel in the microvillar photoreceptors of Drosophila. TRP channels are activated following hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2 ] by the key effector enzyme phospholipase C (PLC). Mutants lacking TRP channels undergo light-dependent retinal degeneration, as a consequence of the reduced Ca 2+ influx. It has been proposed that degeneration is caused by defects in the Ca 2+ -dependent visual pigment cycle, which result in accumulation of toxic phosphorylated metarhodopsin-arrestin complexes (M PP -Arr2). Here we show that two interventions, which prevent accumulation of M PP -Arr2, namely rearing under red light or eliminating the C-terminal rhodopsin phosphorylation sites, failed to rescue degeneration in trp mutants. Instead, degeneration in trp mutants reared under red light was rescued by mutation of PLC. Degeneration correlated closely with the light-induced depletion of PtdIns(4,5)P 2 that occurs in trp mutants due to failure of Ca 2+ -dependent inhibition of PLC. Severe retinal degeneration was also induced in the dark in otherwise wild-type flies by overexpression of a bacterial PtdInsP n phosphatase (SigD) to deplete PtdIns(4,5)P 2 . In degenerating trp photoreceptors, phosphorylated Moesin, a PtdIns(4,5)P 2 -regulated membrane-cytoskeleton linker essential for normal microvillar morphology, was found to delocalize from the rhabdomere and there was extensive microvillar actin depolymerisation. The results suggest that compromised light-induced Ca 2+ influx, due to loss of TRP channels, leads to PtdIns(4,5)P 2 depletion, resulting in dephosphorylation of Moesin, actin depolymerisation and disintegration of photoreceptor structure.
The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called ‘professional’ secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER.
Drosophila photoreceptors (R cells) are an extreme instance of sensory membrane amplification via apical microvilli, a widely deployed and deeply conserved operation of polarized epithelial cells. Developmental rotation of R cell apices aligns rhabdomere microvilli across the optical axis and enables enormous membrane expansion in a new, proximal distal dimension. R cell ectoplasm, the specialized cortical cytoplasm abutting the rhabdomere is likewise enormously amplified. Ectoplasm is dominated by the actin-rich terminal web, a conserved operational domain of the ancient vesicle-transport motor, Myosin V. R cells harness Myosin V to move two distinct cargoes, the biosynthetic traffic that builds the rhabdomere during development and the migration of pigment granules that mediates the adaptive ‘longitudinal pupil’ in adults, using two distinct Rab proteins. Ectoplasm further shapes a distinct cortical endosome compartment, the subrhabdomeral cisterna (SRC), vital to normal cell function. Reticulon, a protein that promotes endomembrane curvature, marks the SRC. R cell visual arrestin 2 (Arr2) is predominantly cytoplasmic in dark-adapted photoreceptors but on illumination it translocates to the rhabdomere, where it quenches ongoing photosignaling by binding to activated metarhodopsin. Arr2 translocation is ‘powered’ by diffusion; a motor is not required to move Arr2 and ectoplasm does not obstruct its rapid diffusion to the rhabdomere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.