MicroRNAs (miRNAs) are widely expressed and regulate most biological functions. According to several research groups, miR-451 expression is decreased in glioma cells. A previous study also confirmed that miRNA-451 inhibits the PI3K/AKT signaling pathway by directly targeting CAB39, which inhibits glioma cell growth and proliferation and induces apoptosis. However, the specific regulatory mechanism is unclear. Mammalian target of rapamycin (mTOR) is a central regulator of the differentiation, proliferation, and migration of a variety of cells. Hypoxia-inducible factor (HIF)-1α is involved in tumor cell migration and invasion. Close relationships among VEGF overexpression, tumor progression, and poor clinical outcomes have been reported. However, whether miRNA-451 influences glioma cell proliferation and invasion by regulating mTOR, HIF-1α, and VEGF expression remains unknown. This study aimed to assess the effects of miRNA-451 on glioma cell proliferation and invasion in vivo and in vitro by investigating its mechanism. Related gene-protein interactions were also predicted and verified. By targeting CAB39, miRNA-451 likely represses the mTOR/HIF-1α/VEGF pathway to inhibit glioma cell proliferation and invasion. Reverse transcription polymerase chain reaction confirmed that transfection of glioma cells with a lentivirus containing miRNA-451 elevated the expression level of miR-451. Upregulation of miR-451 expression suppressed the growth and invasion of glioma cells in vitro and in vivo by targeting CAB39 and modulating the mTOR/HIF-1α/VEGF signaling pathway. Based on these results, miR-451 suppresses glioma cell proliferation and invasion in vitro and in vivo via suppression of the mTOR/HIF-1α/VEGF signaling pathway by targeting CAB39. Therefore, miR-451 may be a new target for glioma treatment.
MicroRNAs play an important role in tumor development and progression. Tumor growth is closely associated with glucose metabolism. Specifically, tumor cells produce energy (ATP) under aerobic and anaerobic conditions through glycolysis and metabolites, such as lactic acid and ATP, as a result of the Warburg effect. However, the transport of glucose into cells depends on protein transporters in the cell membrane. Therefore, this area has recently become a topic of interest for research on targeted cancer therapy. We found that miRNA-451 inhibits the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway to modify the biological behavior of glioma cells. Inhibiting the PI3K/Akt pathway may prevent glucose-addicted cancer cells from performing glycolysis. Akt directly affects glycolysis by regulating the localization of the glucose transporter 1 (GLUT1). However, how miRNA-451 regulates glucose transporters on the cell membrane and affects the regulatory mechanisms of glucose metabolism in glioma cells remains unclear. Consequently, we predict and verify related gene protein interactions. By targeting CAB 39, miRNA-451 likely triggers the LKB1/AMPK/PI3K/AKT pathway, which regulates GLUT1, to inhibit the glucose metabolism of, reduce the energy supply to, and inhibit the proliferation and invasion of glioma cells. Our results suggest a new direction for the treatment of glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.