The number of panicles per unit area is a common indicator of rice yield and is of great significance to yield estimation, breeding, and phenotype analysis. Traditional counting methods have various drawbacks, such as long delay times and high subjectivity, and they are easily perturbed by noise. To improve the accuracy of rice detection and counting in the field, we developed and implemented a panicle detection and counting system that is based on improved region-based fully convolutional networks, and we use the system to automate rice-phenotype measurements. The field experiments were conducted in target areas to train and test the system and used a rotor light unmanned aerial vehicle equipped with a high-definition RGB camera to collect images. The trained model achieved a precision of 0.868 on a held-out test set, which demonstrates the feasibility of this approach. The algorithm can deal with the irregular edge of the rice panicle, the significantly different appearance between the different varieties and growing periods, the interference due to color overlapping between panicle and leaves, and the variations in illumination intensity and shading effects in the field. The result is more accurate and efficient recognition of rice-panicles, which facilitates rice breeding. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a global scale.
Leaf coverage is an indicator of plant growth rate and predicted yield, and thus it is crucial to plant-breeding research. Robust image segmentation of leaf coverage from remote-sensing images acquired by unmanned aerial vehicles (UAVs) in varying environments can be directly used for large-scale coverage estimation, and is a key component of high-throughput field phenotyping. We thus propose an image-segmentation method based on machine learning to extract relatively accurate coverage information from the orthophoto generated after preprocessing. The image analysis pipeline, including dataset augmenting, removing background, classifier training and noise reduction, generates a set of binary masks to obtain leaf coverage from the image. We compare the proposed method with three conventional methods (Hue-Saturation-Value, edge-detection-based algorithm, random forest) and a frontier deep-learning method called DeepLabv3+. The proposed method improves indicators such as Qseg, Sr, Es and mIOU by 15% to 30%. The experimental results show that this approach is less limited by radiation conditions, and that the protocol can easily be implemented for extensive sampling at low cost. As a result, with the proposed method, we recommend using red-green-blue (RGB)-based technology in addition to conventional equipment for acquiring the leaf coverage of agricultural crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.