We introduce a new point process, the dynamic contagion process, by generalising the Hawkes process and the Cox process with shot noise intensity. Our process includes both self-excited and externally excited jumps, which could be used to model the dynamic contagion impact from endogenous and exogenous factors of the underlying system. We have systematically analysed the theoretical distributional properties of this new process, based on the piecewise-deterministic Markov process theory developed in Davis (1984), and the extension of the martingale methodology used in Dassios and Jang (2003). The analytic expressions of the Laplace transform of the intensity process and the probability generating function of the point process have been derived. An explicit example of specified jumps with exponential distributions is also given. The object of this study is to produce a general mathematical framework for modelling the dependence structure of arriving events with dynamic contagion, which has the potential to be applicable to a variety of problems in economics, finance, and insurance. We provide an application of this process to credit risk, and a simulation algorithm for further industrial implementation and statistical analysis.
We introduce a new point process, the dynamic contagion process, by generalising the Hawkes process and the Cox process with shot noise intensity. Our process includes both self-excited and externally excited jumps, which could be used to model the dynamic contagion impact from endogenous and exogenous factors of the underlying system. We have systematically analysed the theoretical distributional properties of this new process, based on the piecewise-deterministic Markov process theory developed in Davis (1984), and the extension of the martingale methodology used in Dassios and Jang (2003). The analytic expressions of the Laplace transform of the intensity process and the probability generating function of the point process have been derived. An explicit example of specified jumps with exponential distributions is also given. The object of this study is to produce a general mathematical framework for modelling the dependence structure of arriving events with dynamic contagion, which has the potential to be applicable to a variety of problems in economics, finance, and insurance. We provide an application of this process to credit risk, and a simulation algorithm for further industrial implementation and statistical analysis.
In this paper, we consider a risk process with the arrival of claims modelled by a dynamic contagion process, a generalisation of the Cox process and Hawkes process introduced by Dassios and Zhao (2011). We derive results for the infinite horizon model that are generalisations of the Cramér-Lundberg approximation, Lundberg's fundamental equation, some asymptotics as well as bounds for the probability of ruin. Special attention is given to the case of exponential jumps and two numerical examples are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.