BackgroundThyroid cancer is one of the most prevalent malignancies in endocrine system. Further understanding and revealing the molecular mechanism underlying thyroid cancer are indispensable for the development of effective diagnosis and treatments. In the present study, we attempted to provide novel basis for targeted therapy for thyroid cancer from the aspect of lncRNA-miRNA-mRNA interaction.MethodsThe expression and cellular function of XIST (X-inactive specific transcript) was determined. miRNAs which may be direct targets of XIST were screened for from online GEO database and miR-34a was selected. Next, the predicted binding between XIST and miR-34a, and the dynamic effect of XIST and miR-34a on downstream MET (hepatocyte growth factor receptor)-PI3K (phosphoinositide 3-kinase)-AKT (α-serine/threonine-protein kinase) signaling was evaluated.ResultsXIST was significantly up-regulated in thyroid cancer tissues and cell lines; XIST knockdown suppressed the cell proliferation in vivo and the tumor growth in vitro. Based on online database and online tool prediction results, miR-34a was underexpressed in thyroid cancer and might be a direct target of XIST. Herein, we confirmed the negative interaction between XIST and miR-34a; moreover, XIST knockdown could reduce the protein levels of MET, a downstream target of miR-34a, and the phosphorylation of PI3K and AKT. In thyroid cancer tissues, MET mRNA and protein levels of MET were up-regulated; MET was positively correlated with XIST while negatively correlated with miR-34a, further confirming that XIST serves as a ceRNA for miR-34a through sponging miR-34a, competing with MET for miR-34a binding, and finally modulating thyroid cancer cell proliferation and tumor growth.ConclusionIn the present study, we provided novel experimental basis for targeted therapy for thyroid cancer from the aspect of lncRNA-miRNA-mRNA interaction.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0950-9) contains supplementary material, which is available to authorized users.
Picornaviruses have evolved to hijack host cellular machinery, including the autophagic pathway. However, the mechanisms remain largely unclear. We use coxsackievirus B3 (CVB3) as a model organism to explore the possible role of picornavirus subversion of the autophagic pathway in viral infection. Our in vivo and in vitro experiments demonstrate that CVB3 infection causes a significant, albeit incomplete, inhibition of autophagic flux by limiting the fusion of autophagosomes with lysosomes and/or late endosomes. Furthermore, we show that CVB3 specifically targets SNARE protein SNAP29 and adaptor protein PLEKHM1, two critical proteins known to regulate autophagosome fusion, for cleavage through the catalytic activity of viral proteinase 3C, ultimately impairing the formation of SNARE complexes. Finally, we demonstrate that loss of SNAP29/PLEKHM1 inhibits autophagic flux, resulting in increased viral replication. Collectively, our study reveals a mechanism that supports an emerging model whereby CVB3 hijacks the autophagic machinery to facilitate its own propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.