Integrating sensing functionalities is envisioned as a distinguishing feature of next-generation mobile networks, which has given rise to the development of a novel enabling technology -Integrated Sensing and Communication (ISAC).Portraying the theoretical performance bounds of ISAC systems is fundamentally important to understand how sensing and communication functionalities interact (e.g., competitively or cooperatively) in terms of resource utilization, while revealing insights and guidelines for the development of effective physicallayer techniques. In this paper, we characterize the fundamental performance tradeoff between the detection probability for target monitoring and the user's achievable rate in ISAC systems. To this end, we first discuss the achievable rate of the user under sensing-free and sensing-interfered communication scenarios. Furthermore, we derive closed-form expressions for the probability of false alarm (PFA) and the successful probability of detection (PD) for monitoring the target of interest, where we consider both communication-assisted and communicationinterfered sensing scenarios. In addition, the effects of the unknown channel coefficient are also taken into account in our theoretical analysis. Based on our analytical results, we then carry out a comprehensive assessment of the performance tradeoff between sensing and communication functionalities. Specifically, we formulate a power allocation problem to minimize the transmit power at the base station (BS) under the constraints of ensuring a required PD for perception as well as the communication user's quality of service requirement in terms of achievable rate. It indicates that, on the one hand, there exists an intrinsic tradeoff between sensing and communication performance under the mutual-interfered scenarios; On the other hand, with prior knowledge of the baseband waveform, these two functionalities might mutually assist each other to enhance the performance. Finally, simulation results corroborate the accuracy of our theoretical analysis and the effectiveness of the This research is supported by the Ministry of Education, Singapore, under its MOE Tier 2 (Award number MOE-T2EP50220-0019). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.
Recently, intelligent reflecting surface (IRS)-assisted communication has gained considerable attention due to its advantage in extending the coverage and compensating the path loss with low-cost passive metasurface. This paper considers the uplink channel estimation for IRS-aided multiuser massive multiinput single-output (MISO) communications with one-bit ADCs at the base station (BS). The use of one-bit ADC is impelled by the low-cost and power efficient implementation of massive antennas techniques. However, the passiveness of IRS and the lack of signal level information after one-bit quantization make the IRS channel estimation challenging. To tackle this problem, we exploit the structured sparsity of the user-IRS-BS cascaded channels and develop three channel estimators, each of which utilizes the structured sparsity at different levels. Specifically, the first estimator exploits the elementwise sparsity of the cascaded channel and employs the sparse Bayesian learning (SBL) to infer the channel responses via the type-II maximum likelihood (ML) estimation. However, due to the one-bit quantization, the type-II ML in general is intractable. As such, a variational expectation-maximization (EM) algorithm is custom-derived to iteratively compute an ML solution. The second estimator utilizes the common row-structured sparsity induced by the IRS-to-BS channel shared among the users, and develops another type-II ML solution via the block SBL (BSBL) and the variational EM. To further improve the performance of BSBL, a third two-stage estimator is proposed, which can utilize both the common rowstructured sparsity and the column-structured sparsity arising from the limited scattering around the users. Simulation results show that the more diverse structured sparsity is exploited, the better estimation performance is achieved, and that the proposed estimators are superior to state-of-the-art one-bit estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.