SignificancePhotosystem II (PSII) reaction center protein D1 is encoded by chloroplast gene psbA and is crucial to the biogenesis and functional maintenance of PSII. D1 proteins are highly dynamic under varying light conditions and thus require efficient synthesis, but the mechanism remains poorly understood. We reported that Arabidopsis LPE1 directly binds to the 5′ UTR of psbA mRNA in a light-dependent manner through a redox-based mechanism and facilitates the association of HCF173 with psbA mRNA to regulate D1 translation. These findings fill a major gap in our understanding of the mechanism of light-regulated D1 synthesis in higher plants and imply that higher plants and primitive photosynthetic organisms share conserved mechanisms but use distinct regulators to regulate biogenesis of PSII subunits.
Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in the early period of the fermentation and, thereafter, tended to the stabilization in the mid-late periods. This study gave us important clues to understand the fermentation process and can serve as a foundation for improving the quality of soy sauce in the future.
The plasma proteome of healthy dairy cattle and those with footrot was investigated using a shotgun LC-MS/MS approach. In total, 648 proteins were identified in healthy plasma samples, of which 234 were non-redundant proteins and 123 were high-confidence proteins; 712 proteins were identified from footrot plasma samples, of which 272 were non-redundant proteins and 138 were high-confidence proteins. The high-confidence proteins showed significant differences between healthy and footrot plasma samples in molecular weight, isoelectric points and the Gene Ontology categories. 22 proteins were found that may differentiate between the two sets of plasma proteins, of which 16 potential differential expression (PDE) proteins from footrot plasma involved in immunoglobulins, innate immune recognition molecules, acute phase proteins, regulatory proteins, and cell adhesion and cytoskeletal proteins; 6 PDE proteins from healthy plasma involved in regulatory proteins, cytoskeletal proteins and coagulation factors. Of these PDE proteins, haptoglobin, SERPINA10 protein, afamin precursor, haptoglobin precursor, apolipoprotein D, predicted peptidoglycan recognition protein L (PGRP-L) and keratan sulfate proteoglycan (KS-PG) were suggested to be potential footrot-associated factors. The PDE proteins PGRP-L and KS-PG were highlighted as potential biomarkers of footrot in cattle. The resulting protein lists and potential differentially expressed proteins may provide valuable information to increase understanding of plasma protein profiles in cattle and to assist studies of footrot-associated factors.
We describe a low-input RNase footprinting approach for the rapid quantification of ribosome-protected fragments with as few as 1000 cultured cells. The assay uses a simplified procedure to selectively capture ribosome footprints based on optimized RNase digestion. It simultaneously maps cytosolic and mitochondrial translation with single-nucleotide resolution. We applied it to reveal selective functions of the elongation factor TUFM in mitochondrial translation, as well as synchronized repression of cytosolic translation after TUFM perturbation. We show the assay is applicable to small amounts of primary tissue samples with low protein synthesis rates, including snap-frozen tissues and immune cells from an individual's blood draw. We showed its feasibility to characterize the personalized immuno-translatome. Our analyses revealed that thousands of genes show lower translation efficiency in monocytes compared with lymphocytes, and identified thousands of translated noncanonical open reading frames (ORFs). Altogether, our RNase footprinting approach opens an avenue to assay transcriptome-wide translation using low-input samples from a wide range of physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.