The formation processes of barrier anodic alumina (BAA) and porous anodic alumina (PAA) are discussed in detail. The anodizing current J(T) within the oxide includes ionic current j(ion) and electronic current j(e) during the anodizing process. The j(ion) is used to form an oxide and the j(e) is used to give rise to oxygen gas or sparking. The j(e) results from the impurity centers within the oxide. For a given electrolyte, the j(e) is dependent on the impurity centers and independent of the J(T). The formation of nanopores can be ascribed to the oxygen evolution within the oxide. Oxygen gas will begin to be released at the critical thickness d(c). The manner of the development of PAA is in accordance with that of BAA. The differences between PAA and BAA are the magnitude of j(e) or the continuity of oxygen evolution. There are two competitive reactions, i.e. oxide growth (2Al3 + 3O2- --> Al2O3) and oxygen evolution (2O2- --> O2 up arrow + 4e). The former keeps the wall of the channel lengthened, the latter keeps the channel open. By controlling the release rate of oxygen gas under different pressures, the shape of the channels can be adjusted. The present results may open up some opportunities for fabricating special templates.
The recent booming development of wearable electronics urgently calls for high-performance flexible strain sensors. To date, it is still a challenge to manufacture flexible strain sensors with superb sensitivity and a large workable strain range simultaneously. Herein, a facile, quick, cost-effective, and scalable strategy is adopted to fabricate novel strain sensors based on reduced graphene oxide woven fabrics (GWF). By pyrolyzing commercial cotton bandages coated with graphene oxide (GO) sheets in an ethanol flame, the reduction of GO and the pyrolysis of the cotton bandage template can be synchronously completed in tens of seconds. Due to the unique hierarchical structure of the GWF, the strain sensor based on GWF exhibits large stretchability (57% strain) with high sensitivity, inconspicuous drift, and durability. The GWF strain sensor is successfully used to monitor full-range (both subtle and vigorous) human activities or physical vibrational signals of the local environment. The present work offers an effective strategy to rapidly prepare low-cost flexible strain sensors with potential applications in the fields of wearable electronics, artificial intelligence devices, and so forth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.