Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver hemangiomas at high frequency, but the incidence of kidney tumors is somewhat lower than in Tsc2 heterozygote mice. Liver hemangiomas were more common, more severe and caused higher mortality in female than in male Tsc1 heterozygotes. Tsc1 null embryo fibroblast lines have persistent phosphorylation of the p70S6K (S6K) and its substrate S6, that is sensitive to treatment with rapamycin, indicating constitutive activation of the mTOR-S6K pathway due to loss of the Tsc1 protein, hamartin. Hyperphosphorylation of S6 is also seen in kidney tumors in the heterozygote mice, suggesting that inhibition of this pathway may have benefit in control of TSC hamartomas.
The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70 S6K ) in vitro, and we demonstrate that overexpression of p70 S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability.
Although aerobic glycolysis (the Warburg effect) is a hallmark of cancer, key questions, including when, how, and why cancer cells become highly glycolytic, remain less clear. For a largely unknown regulatory mechanism, a rate-limiting glycolytic enzyme pyruvate kinase M2 (PKM2) isoform is exclusively expressed in embryonic, proliferating, and tumor cells, and plays an essential role in tumor metabolism and growth. Because the receptor tyrosine kinase/PI3K/ AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) signaling cascade is a frequently altered pathway in cancer, we explored its potential role in cancer metabolism. We identified mTOR as a central activator of the Warburg effect by inducing PKM2 and other glycolytic enzymes under normoxic conditions. PKM2 level was augmented in mouse kidney tumors due to deficiency of tuberous sclerosis complex 2 and consequent mTOR activation, and was reduced in human cancer cells by mTOR suppression. mTOR up-regulation of PKM2 expression was through hypoxia-inducible factor 1α (HIF1α)-mediated transcription activation, and c-Myc-heterogeneous nuclear ribonucleoproteins (hnRNPs)-dependent regulation of PKM2 gene splicing. Disruption of PKM2 suppressed oncogenic mTOR-mediated tumorigenesis. Unlike normal cells, mTOR hyperactive cells were more sensitive to inhibition of mTOR or glycolysis. Dual suppression of mTOR and glycolysis synergistically blunted the proliferation and tumor development of mTOR hyperactive cells. Even though aerobic glycolysis is not required for breach of senescence for immortalization and transformation, the frequently deregulated mTOR signaling during multistep oncogenic processes could contribute to the development of the Warburg effect in many cancers. Components of the mTOR/HIF1α/Myc-hnRNPs/PKM2 glycolysis signaling network could be targeted for the treatment of cancer caused by an aberrant RTK/PI3K/AKT/mTOR signaling pathway.PTEN | tuberous sclerosis 1 | hexokinase II | lactate dehydrogenase-B | glyceraldehyde 3-phosphate dehydrogenase U nlike in normal cells, glycolysis is induced by hypoxia, and cancer cells preferentially metabolize glucose by glycolysis, even in an aerobic environment (1-3). Increased glucose consumption and an elevated rate of lactate production by cancer cells are characteristics of glycolysis, first described by Otto Warburg in the 1920s and thereafter known as the Warburg effect (4). Because this altered metabolism can occur even in the presence of oxygen, glycolysis presumably confers a selective advantage for the survival and proliferation of cancer cells. This catabolic process is, however, inefficient for energy production in that it generates only 2 mol of ATP, instead of an additional 36 mol through the tricarboxylic acid (TCA) cycle, in the presence of oxygen by using 1 mol of glucose (2, 3, 5).Although the Warburg effect is a well-recognized hallmark of cancer metabolism, its regulatory mechanism is still largely obscure. Critical issues, including how and when cancer cells acquire this highly glycolytic phenoty...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.