Sister of P-glycoprotein (SPGP) is the major hepatic bile salt export pump (BSEP). BSEP/SPGP expression varies dramatically among human livers. The potency and hierarchy of bile acids as ligands for the farnesyl/ bile acid receptor (FXR/BAR) paralleled their ability to induce BSEP in human hepatocyte cultures. FXR:RXR heterodimers bound to IR1 elements and enhanced bile acid transcriptional activation of the mouse and human BSEP/SPGP promoters. In FXR/BAR nullizygous mice, which have dramatically reduced BSEP/SPGP levels, hepatic CYP3A11 and CYP2B10 were strongly but unexpectedly induced. Notably, the rank order of bile acids as CYP3A4 inducers and activators of pregnane X receptor/steroid and xenobiotic receptor (PXR/SXR) closely paralleled each other but was markedly different from their hierarchy and potency as inducers of BSEP in human hepatocytes. Moreover, the hepatoprotective bile acid ursodeoxycholic acid, which reverses hydrophobic bile acid hepatotoxicity, activates PXR and efficaciously induces CYP3A4 (a bile-metabolizing enzyme) in primary human hepatocytes thus providing one mechanism for its hepatoprotection. Because serum and urinary bile acids increased in FXR/BAR ؊/؊ mice, we evaluated hepatic transporters for compensatory changes that might circumvent the profound decrease in BSEP/SPGP. We found weak MRP3 up-regulation. In contrast, MRP4 was substantially increased in the FXR/ BAR nullizygous mice and was further elevated by cholic acid. Thus, enhanced hepatocellular concentrations of bile acids, due to the down-regulation of BSEP/SPGPmediated efflux in FXR nullizygous mice, result in an alternate but apparent compensatory up-regulation of CYP3A, CYP2B, and some ABC transporters that is consistent with activation of PXR/SXR by bile acids.
The mechanisms underlying leptin resistance are still being defined. We report here the presence in human blood of several serum leptin-interacting proteins (SLIPs), isolated by leptin-affinity chromatography and identified by mass spectrometry and immunochemical analysis. We confirmed that one of the major SLIPs is C-reactive protein (CRP). In vitro, human CRP directly inhibits the binding of leptin to its receptors and blocks its ability to signal in cultured cells. In vivo, infusion of human CRP into ob/ob mice blocked the effects of leptin upon satiety and weight reduction. In mice that express a transgene encoding human CRP, the actions of human leptin were completely blunted. We also found that physiological concentrations of leptin can stimulate expression of CRP in human primary hepatocytes. Recently, human CRP has been correlated with increased adiposity and plasma leptin. Thus, our results suggest a potential mechanism contributing to leptin resistance, by which circulating CRP binds to leptin and attenuates its physiological functions.
ABSTRACT:St. John's wort extract (SJW) (Hypericum perforatum L.) is among the most commonly used herbal medications in the United States. The predominance of clinical reports indicates that SJW increases the activity of cytochrome P450 3A4 (CYP3A4) enzyme and reduces plasma concentrations of certain drugs. Although the inductive effect of SJW on CYP3A4 is clear, other reports indicate that SJW constituents may have, to a small degree, some enzyme inhibitory effects. Therefore, we sought to study the induction and inhibition effects of the constituents of SJW on CYP3A4 in the human hepatocyte model. Moreover, most research has focused on the induction of CYP3A4 by SJW with little attention paid to other prominent drug-metabolizing enzymes such as CYP1A2, CYP2C9, and CYP2D6. To examine the effects of SJW on CYP1A2, CYP2C9, CYP2D6, as well as CYP3A4, hepatocytes were exposed to hyperforin and hypericin, the primary constituents of SJW extract. Hepatocytes treated with hypericin or hyperforin were exposed to probe substrates to determine enzyme activity and protein and RNA harvested. Hyperforin treatment resulted in significant increases in mRNA, protein, and activity of CYP3A4 and CYP2C9, but had no effect on CYP1A2 or CYP2D6. Acute administration of hyperforin at 5 and 10 M 1 h before and along with probe substrate inhibited CYP3A4 activity. Hypericin had no effect on any of the enzymes tested. These results demonstrate that with chronic exposure, the inductive effect of SJW on drug-metabolizing enzymes predominates, and human hepatocyte cultures are a versatile in vitro tool for screening the effect of herbal products on cytochrome P450 enzymes.In 2002, sales of botanical supplements in the United States reached nearly $293 million dollars. St. John's wort accounted for 15 million U.S. dollars in sales, making it the fourth highest grossing botanical supplement (Blumenthal, 2003). Several clinical studies have demonstrated the effectiveness of St. John's wort compared with conventional therapy in the treatment of mild to moderate depression (Linde et al., 1996;Wheatley, 1997).Marketed St. John's wort, an extract of the flowering portion of the plant Hypericum perforatum L., is a mixture of a number of biologically active, complex compounds. At 0.3 mg per capsule, the naphthodianthrone hypericin is used as a means of standardization of the marketed product. The phloroglucinol hyperforin, the most plentiful lipophilic compound in the extract, is a potent reuptake inhibitor of serotonin, norepinephrine, and dopamine (Muller et al., 1998).Several recent reports have documented decreased blood/plasma levels of cytochrome P450 3A4 (CYP3A4) substrates, such as indinavir and cyclosporin A, in patients concomitantly taking St. John's wort (Piscitelli et al., 2000;Ahmed et al., 2001). Similar observations have been documented for digoxin, a substrate of the intestinal transporter P-glycoprotein (P-gp 4 ). Additional in vivo evidence has demonstrated that St. John's wort increased CYP3A4 and P-gp protein levels in rats (Dur...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.