Green development is an effective way to reconcile the main contradictions between resources, environment, and regional development. Green total factor productivity (GTFP) is an important index to measure green development; an undesirable output-oriented SBM-DEA model and GML model can be used to calculate GTFP. China’s 30 provinces (municipalities and autonomous regions) are divided into three groups: eastern, central, and western. The common frontier function and group frontier function are established, respectively, to deeply explore the temporal and spatial evolution characteristics and center of gravity shift of inter-provincial green total factor productivity (GTFP) in China, and test the convergence under group frontier, to compare the convergence problems under different regions. This study aims to point out the differences in economic growth in different regions of China, foster regional coordination and orderly progress, promote China’s green development process, and improve the high-quality economic development level. According to the results, the efficiency of green development is more reasonable under the frontier groups. The average TGR in the eastern region was 0.993, indicating that it reached 99.3% of the meta-frontier green development efficiency technology. The inter-provincial GTFP in China gradually increased, with an average value of 1.043, which means China’s green development and ecological civilization construction have achieved remarkable results and the three regions showed significant differences. Judging from the shift path of the spatial center of gravity, the spatial distribution pattern of inter-provincial GTFP in China tends to be concentrated and stable as a whole. Moreover, σ convergence only exists in the western region, while absolute β convergence and conditional β convergence exist in eastern, central, and western regions, indicating that the GTFP of different regions will converge to their stable states over time. The results provide a basis for improving the efficiency of institutional allocation of environmental resources, implementing regional differentiated environmental regulation policies, and increasing the value creation of factor resources, which is of great significance for realizing the high-quality economic development in which resources, environment, and economy are coordinated in China.
Modeling the direct economic losses of storm surge disasters can assess the disaster situation in a timely manner and improve the efficiency of post-disaster management in practice, which is acknowledged as one of the most significant issues in clean production. However, improving the forecasting accuracy of direct economic losses caused by storm surge disasters remains challenging, which is also a major concern in the field of disaster risk management. In particular, most of the previous studies have mainly focused on individual models, which ignored the significance of reduction and optimization. Therefore, a novel direct economic loss forecasting system for storm surge disasters is proposed in this study, which includes reduction, forecasting, and evaluation modules. In this system, a forecasting module based on an improved machine learning technique is proposed, which improves the generalization ability and robustness of the system. In addition, the key attributes and samples are selected by the proposed reduction module to further improve the forecasting performance from the two innovative perspectives. Moreover, an evaluation module is incorporated to comprehensively evaluate the superiority of the developed forecasting system. Data on the storm surge disasters from three typical provinces are utilized to conduct a case study, and the performance of the proposed forecasting system is analyzed and compared with eight comparison models. The experimental results show that the mean absolute percentage error (MAPE) predicted by the Extreme Learning Machine (ELM) model was 16.5293%, and the MAPE predicted by the proposed system was 1.0313%. Overall, the results show that the performance of the proposed forecasting system is superior compared to other models, and it is suitable for the forecasting of direct economic losses resulting from storm surge disasters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.