NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.
Microglia are crucial for the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Here, we show that the E3 ubiquitin ligase Peli1 is abundantly expressed in microglia and serves as a pivotal mediator of microglial activation during the course of EAE induction. Peli1 mediates the induction of chemokines and proinflammatory cytokines in microglia and, thereby, promotes recruitment of T cells into the central nervous system. Peli1-deficient mice are refractory to EAE induction despite their competent production of Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms HHS Public Access
Deubiquitinases (DUBs) represent a new class of drug targets, although the physiological function of only few DUBs has been characterized. Here we identified the DUB USP15 as a crucial negative regulator of T cell activation. USP15 stabilized an E3 ubiquitin ligase, MDM2, which in turn negatively regulated T cell activation by targeting the degradation of the transcription factor NFATc2. USP15 deficiency promoted T cell activation in vitro and enhanced T cell responses to bacterial infection and tumor challenge in vivo. USP15 also stabilized MDM2 in cancer cells and regulated p53 function and cancer cell survival. Our results suggest that inhibition of USP15 may both induce tumor cell apoptosis and boost antitumor T cell responses.
The noncanonical NF-κB pathway forms a major arm of NF-κB signaling that mediates important biological functions, including lymphoid organogenesis, B lymphocyte function, and cell growth and survival1-3. Activation of the noncanonical NF-κB pathway involves degradation of an inhibitory protein, TNF receptor associated factor 3 (TRAF3), but how this signaling event is controlled is still unknown1,2. Here we have identified the deubiquitinase Otud7b as a pivotal regulator of the noncanonical NF-κB pathway. Otud7b deficiency in mice has no appreciable effect on canonical NF-κB activation but causes hyper-activation of noncanonical NF-κB. In response to noncanonical NF-κB stimuli, Otud7b binds and deubiquitinates TRAF3, thereby inhibiting TRAF3 proteolysis and preventing aberrant noncanonical NF-κB activation. Consequently, the Otud7b deficiency results in B-cell hyperresponsiveness to antigens, lymphoid follicular hyperplasia in the intestinal mucosa, and elevated host-defense ability against an intestinal bacterial pathogen, Citrobacter rodentium. These findings establish Otud7b as a crucial regulator of signal-induced noncanonical NF-κB activation and suggest a mechanism of immune regulation that involves Otud7b-mediated deubiquitination and stabilization of TRAF3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.