This paper presents a compiler and runtime framework for parallelizing sparse matrix computations that have loopcarried dependences. Our approach automatically generates a runtime inspector to collect data dependence information and achieves wavefront parallelization of the computation, where iterations within a wavefront execute in parallel, and synchronization is required across wavefronts. A key contribution of this paper involves dependence simplification, which reduces the time and space overhead of the inspector. This is implemented within a polyhedral compiler framework, extended for sparse matrix codes. Results demonstrate the feasibility of using automaticallygenerated inspectors and executors to optimize ILU factorization and symmetric Gauss-Seidel relaxations, which are part of the Preconditioned Conjugate Gradient (PCG) computation. Our implementation achieves a median speedup of 2.97× on 12 cores over the reference sequential PCG implementation, significantly outperforms PCG parallelized using Intel's Math Kernel Library (MKL), and is within 6% of the median performance of manually-parallelized PCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.