Underwater positioning presents a challenging issue, because of the rapid attenuation of electronic magnetic waves, the disturbances and uncertainties in the environment. Conventional methods usually employed acoustic devices to localize Unmanned Underwater Vehicles (UUVs), which suffer from a slow refresh rate, low resolution, and are susceptible to the environmental noise. In addition, the complex terrain can also degrade the accuracy of the acoustic navigation systems. The applications of underwater positioning methods based on visual sensors are prevented by difficulties of acquiring the depth maps due to the sparse features, the changing illumination condition, and the scattering phenomenon. In the paper, a novel visual-based underwater positioning system is proposed based on a Light Detection and Ranging (LiDAR) camera and an inertial measurement unit. The LiDAR camera, benefiting from the laser scanning techniques, could simultaneously generate the associated depth maps. The inertial sensor would offer information about its altitudes. Through the fusion of the data from multiple sensors, the positions of the UUVs can be predicted. After that, the Bundle Adjustment (BA) method is used to recalculate the rotation matrix and the translation vector to improve the accuracy. The experiments are carried out in a tank to illustrate the effects and accuracy of the investigated method, in which the ultra-wideband (UWB) positioning system is used to provide reference trajectories. It is concluded that the developed positioning system is able to estimate the trajectory of UUVs accurately, whilst being stable and robust.
Marine oil pollution poses a serious threat to the marine ecological balance. It is of great significance to develop rapid and efficient oil spill detection methods for the mitigation of marine oil spill pollution and the restoration of the marine ecological environment. X-band marine radar is one of the important monitoring devices, in this article, we perform the digital X-band radar image by “Sperry Marine” radar system for an oil film extraction experiment. First, the de-noised image was obtained by preprocessing the original image in the Cartesian coordinate system. Second, it was cut into slices. Third, the texture features of the slices were calculated based on the gray-level co-occurrence matrix (GLCM) and K-means method to extract the rough oil spill regions. Finally, the oil spill regions were segmented using the Sauvola threshold algorithm. The experimental results indicate that this study provides a scientific method for the research of oil film extraction. Compared with other methods of oil spill extraction in X-band single-polarization marine radar images, the proposed technology is more intelligent, and it can provide technical support for marine oil spill emergency response in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.